1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24  */
  25 
  26 /*
  27  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  28  * Use is subject to license terms.
  29  */
  30 
  31 #pragma weak __rintf = rintf
  32 
  33 
  34 /*
  35  * aintf(x)     return x chopped to integral value
  36  * anintf(x)    return sign(x)*(|x|+0.5) chopped to integral value
  37  * irintf(x)    return rint(x) in integer format
  38  * nintf(x)     return anint(x) in integer format
  39  * rintf(x)     return x rounded to integral according to the rounding direction
  40  *
  41  * NOTE: rintf(x), aintf(x) and anintf(x) return results with the same sign as
  42  * x's,  including 0.0.
  43  */
  44 
  45 #include "libm.h"
  46 
  47 static const float xf[] = {
  48 /* ZEROF */
  49         0.0f,
  50 /* TWO_23F */ 8.3886080000e6f,
  51 /* MTWO_23F */ -8.3886080000e6f,
  52 /* ONEF */ 1.0f,
  53 /* MONEF */ -1.0f,
  54 /* HALFF */ 0.5f,
  55 /* MHALFF */ -0.5f,
  56 /* HUGEF */ 1.0e30f,
  57 };
  58 
  59 #define ZEROF           xf[0]
  60 #define TWO_23F         xf[1]
  61 #define MTWO_23F        xf[2]
  62 #define ONEF            xf[3]
  63 #define MONEF           xf[4]
  64 #define HALFF           xf[5]
  65 #define MHALFF          xf[6]
  66 #define HUGEF           xf[7]
  67 
  68 float
  69 aintf(float x)
  70 {
  71         int hx, k;
  72         float y;
  73 
  74         hx = *(int *)&x;
  75         k = (hx & ~0x80000000) >> 23;
  76 
  77         if (k < 150) {
  78                 y = (float)((int)x);
  79 
  80                 /*
  81                  * make sure y has the same sign of x when |x|<0.5
  82                  * (i.e., y=0.0)
  83                  */
  84                 return (((k - 127) & hx) < 0 ? -y : y);
  85         } else {
  86                 /* signal invalid if x is a SNaN */
  87                 return (x * ONEF);      /* +0 -> *1 for Cheetah */
  88         }
  89 }
  90 
  91 float
  92 anintf(float x)
  93 {
  94         volatile float dummy __unused;
  95         int hx, k, j, ix;
  96 
  97         hx = *(int *)&x;
  98         ix = hx & ~0x80000000;
  99         k = ix >> 23;
 100 
 101         if (((k - 127) ^ (k - 150)) < 0) {
 102                 j = 1 << (149 - k);
 103                 k = j + j - 1;
 104 
 105                 if ((k & hx) != 0)
 106                         dummy = HUGEF + x;      /* raise inexact */
 107 
 108                 *(int *)&x = (hx + j) & ~k;
 109                 return (x);
 110         } else if (k <= 126) {
 111                 dummy = HUGEF + x;
 112                 *(int *)&x = (0x3f800000 & ((125 - k) >> 31)) |
 113                     (0x80000000 & hx);
 114                 return (x);
 115         } else {
 116                 /* signal invalid if x is a SNaN */
 117                 return (x * ONEF);      /* +0 -> *1 for Cheetah */
 118         }
 119 }
 120 
 121 int
 122 irintf(float x)
 123 {
 124         float v;
 125         int hx, k;
 126 
 127         hx = *(int *)&x;
 128         k = (hx & ~0x80000000) >> 23;
 129         v = xf[((k - 150) >> 31) & (1 - (hx >> 31))];
 130         return ((int)((float)(x + v) - v));
 131 }
 132 
 133 int
 134 nintf(float x)
 135 {
 136         int hx, ix, k, j, m;
 137         volatile float dummy __unused;
 138 
 139         hx = *(int *)&x;
 140         k = (hx & ~0x80000000) >> 23;
 141 
 142         if (((k - 126) ^ (k - 150)) < 0) {
 143                 ix = (hx & 0x00ffffff) | 0x800000;
 144                 m = 149 - k;
 145                 j = 1 << m;
 146 
 147                 if ((ix & (j + j - 1)) != 0)
 148                         dummy = HUGEF + x;
 149 
 150                 hx = hx >> 31;
 151                 return ((((ix + j) >> (m + 1)) ^ hx) - hx);
 152         } else {
 153                 return ((int)x);
 154         }
 155 }
 156 
 157 float
 158 rintf(float x)
 159 {
 160         float w, v;
 161         int hx, k;
 162 
 163         hx = *(int *)&x;
 164         k = (hx & ~0x80000000) >> 23;
 165 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
 166         if (k >= 150)
 167                 return (x * ONEF);
 168 
 169         v = xf[1 - (hx >> 31)];
 170 #else
 171         v = xf[((k - 150) >> 31) & (1 - (hx >> 31))];
 172 #endif
 173         w = (float)(x + v);
 174 
 175         if (k < 127 && w == v)
 176                 return (ZEROF * x);
 177         else
 178                 return (w - v);
 179 }