1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __j0f = j0f 32 #pragma weak __j1f = j1f 33 #pragma weak __jnf = jnf 34 #pragma weak __y0f = y0f 35 #pragma weak __y1f = y1f 36 #pragma weak __ynf = ynf 37 38 #include "libm.h" 39 #include <float.h> 40 41 #if defined(__i386) && !defined(__amd64) 42 extern int __swapRP(int); 43 #endif 44 45 static const float zerof = 0.0f, onef = 1.0f; 46 47 static const double C[] = { 48 0.0, 49 -0.125, 50 0.25, 51 0.375, 52 0.5, 53 1.0, 54 2.0, 55 8.0, 56 0.5641895835477562869480794515607725858441, /* 1/sqrt(pi) */ 57 0.636619772367581343075535053490057448, /* 2/pi */ 58 1.0e9, 59 }; 60 61 #define zero C[0] 62 #define neighth C[1] 63 #define quarter C[2] 64 #define three8 C[3] 65 #define half C[4] 66 #define one C[5] 67 #define two C[6] 68 #define eight C[7] 69 #define isqrtpi C[8] 70 #define tpi C[9] 71 #define big C[10] 72 73 static const double Cj0y0[] = { 74 0.4861344183386052721391238447e5, /* pr */ 75 0.1377662549407112278133438945e6, 76 0.1222466364088289731869114004e6, 77 0.4107070084315176135583353374e5, 78 0.5026073801860637125889039915e4, 79 0.1783193659125479654541542419e3, 80 0.88010344055383421691677564e0, 81 0.4861344183386052721414037058e5, /* ps */ 82 0.1378196632630384670477582699e6, 83 0.1223967185341006542748936787e6, 84 0.4120150243795353639995862617e5, 85 0.5068271181053546392490184353e4, 86 0.1829817905472769960535671664e3, 87 1.0, 88 -0.1731210995701068539185611951e3, /* qr */ 89 -0.5522559165936166961235240613e3, 90 -0.5604935606637346590614529613e3, 91 -0.2200430300226009379477365011e3, 92 -0.323869355375648849771296746e2, 93 -0.14294979207907956223499258e1, 94 -0.834690374102384988158918e-2, 95 0.1107975037248683865326709645e5, /* qs */ 96 0.3544581680627082674651471873e5, 97 0.3619118937918394132179019059e5, 98 0.1439895563565398007471485822e5, 99 0.2190277023344363955930226234e4, 100 0.106695157020407986137501682e3, 101 1.0, 102 }; 103 104 #define pr Cj0y0 105 #define ps (Cj0y0 + 7) 106 #define qr (Cj0y0 + 14) 107 #define qs (Cj0y0 + 21) 108 109 static const double Cj0[] = { 110 -2.500000000000003622131880894830476755537e-0001, /* r0 */ 111 1.095597547334830263234433855932375353303e-0002, 112 -1.819734750463320921799187258987098087697e-0004, 113 9.977001946806131657544212501069893930846e-0007, 114 1.0, /* s0 */ 115 1.867609810662950169966782360588199673741e-0002, 116 1.590389206181565490878430827706972074208e-0004, 117 6.520867386742583632375520147714499522721e-0007, 118 9.999999999999999942156495584397047660949e-0001, /* r1 */ 119 -2.389887722731319130476839836908143731281e-0001, 120 1.293359476138939027791270393439493640570e-0002, 121 -2.770985642343140122168852400228563364082e-0004, 122 2.905241575772067678086738389169625218912e-0006, 123 -1.636846356264052597969042009265043251279e-0008, 124 5.072306160724884775085431059052611737827e-0011, 125 -8.187060730684066824228914775146536139112e-0014, 126 5.422219326959949863954297860723723423842e-0017, 127 1.0, /* s1 */ 128 1.101122772686807702762104741932076228349e-0002, 129 6.140169310641649223411427764669143978228e-0005, 130 2.292035877515152097976946119293215705250e-0007, 131 6.356910426504644334558832036362219583789e-0010, 132 1.366626326900219555045096999553948891401e-0012, 133 2.280399586866739522891837985560481180088e-0015, 134 2.801559820648939665270492520004836611187e-0018, 135 2.073101088320349159764410261466350732968e-0021, 136 }; 137 138 #define r0 Cj0 139 #define s0 (Cj0 + 4) 140 #define r1 (Cj0 + 8) 141 #define s1 (Cj0 + 17) 142 143 static const double Cy0[] = { 144 -7.380429510868722526754723020704317641941e-0002, /* u0 */ 145 1.772607102684869924301459663049874294814e-0001, 146 -1.524370666542713828604078090970799356306e-0002, 147 4.650819100693891757143771557629924591915e-0004, 148 -7.125768872339528975036316108718239946022e-0006, 149 6.411017001656104598327565004771515257146e-0008, 150 -3.694275157433032553021246812379258781665e-0010, 151 1.434364544206266624252820889648445263842e-0012, 152 -3.852064731859936455895036286874139896861e-0015, 153 7.182052899726138381739945881914874579696e-0018, 154 -9.060556574619677567323741194079797987200e-0021, 155 7.124435467408860515265552217131230511455e-0024, 156 -2.709726774636397615328813121715432044771e-0027, 157 1.0, /* v0 */ 158 4.678678931512549002587702477349214886475e-0003, 159 9.486828955529948534822800829497565178985e-0006, 160 1.001495929158861646659010844136682454906e-0008, 161 4.725338116256021660204443235685358593611e-0012, 162 }; 163 164 #define u0 Cy0 165 #define v0 (Cy0 + 13) 166 167 static const double Cj1y1[] = { 168 -0.4435757816794127857114720794e7, /* pr0 */ 169 -0.9942246505077641195658377899e7, 170 -0.6603373248364939109255245434e7, 171 -0.1523529351181137383255105722e7, 172 -0.1098240554345934672737413139e6, 173 -0.1611616644324610116477412898e4, 174 -0.4435757816794127856828016962e7, /* ps0 */ 175 -0.9934124389934585658967556309e7, 176 -0.6585339479723087072826915069e7, 177 -0.1511809506634160881644546358e7, 178 -0.1072638599110382011903063867e6, 179 -0.1455009440190496182453565068e4, 180 0.3322091340985722351859704442e5, /* qr0 */ 181 0.8514516067533570196555001171e5, 182 0.6617883658127083517939992166e5, 183 0.1849426287322386679652009819e5, 184 0.1706375429020768002061283546e4, 185 0.3526513384663603218592175580e2, 186 0.7087128194102874357377502472e6, /* qs0 */ 187 0.1819458042243997298924553839e7, 188 0.1419460669603720892855755253e7, 189 0.4002944358226697511708610813e6, 190 0.3789022974577220264142952256e5, 191 0.8638367769604990967475517183e3, 192 }; 193 194 #define pr0 Cj1y1 195 #define ps0 (Cj1y1 + 6) 196 #define qr0 (Cj1y1 + 12) 197 #define qs0 (Cj1y1 + 18) 198 199 static const double Cj1[] = { 200 -6.250000000000002203053200981413218949548e-0002, /* a0 */ 201 1.600998455640072901321605101981501263762e-0003, 202 -1.963888815948313758552511884390162864930e-0005, 203 8.263917341093549759781339713418201620998e-0008, 204 1.0e0, /* b0 */ 205 1.605069137643004242395356851797873766927e-0002, 206 1.149454623251299996428500249509098499383e-0004, 207 3.849701673735260970379681807910852327825e-0007, 208 4.999999999999999995517408894340485471724e-0001, 209 -6.003825028120475684835384519945468075423e-0002, 210 2.301719899263321828388344461995355419832e-0003, 211 -4.208494869238892934859525221654040304068e-0005, 212 4.377745135188837783031540029700282443388e-0007, 213 -2.854106755678624335145364226735677754179e-0009, 214 1.234002865443952024332943901323798413689e-0011, 215 -3.645498437039791058951273508838177134310e-0014, 216 7.404320596071797459925377103787837414422e-0017, 217 -1.009457448277522275262808398517024439084e-0019, 218 8.520158355824819796968771418801019930585e-0023, 219 -3.458159926081163274483854614601091361424e-0026, 220 1.0e0, /* b1 */ 221 4.923499437590484879081138588998986303306e-0003, 222 1.054389489212184156499666953501976688452e-0005, 223 1.180768373106166527048240364872043816050e-0008, 224 5.942665743476099355323245707680648588540e-0012, 225 }; 226 227 #define a0 Cj1 228 #define b0 (Cj1 + 4) 229 #define a1 (Cj1 + 8) 230 #define b1 (Cj1 + 20) 231 232 static const double Cy1[] = { 233 -1.960570906462389461018983259589655961560e-0001, /* c0 */ 234 4.931824118350661953459180060007970291139e-0002, 235 -1.626975871565393656845930125424683008677e-0003, 236 1.359657517926394132692884168082224258360e-0005, 237 1.0e0, /* d0 */ 238 2.565807214838390835108224713630901653793e-0002, 239 3.374175208978404268650522752520906231508e-0004, 240 2.840368571306070719539936935220728843177e-0006, 241 1.396387402048998277638900944415752207592e-0008, 242 -1.960570906462389473336339614647555351626e-0001, /* c1 */ 243 5.336268030335074494231369159933012844735e-0002, 244 -2.684137504382748094149184541866332033280e-0003, 245 5.737671618979185736981543498580051903060e-0005, 246 -6.642696350686335339171171785557663224892e-0007, 247 4.692417922568160354012347591960362101664e-0009, 248 -2.161728635907789319335231338621412258355e-0011, 249 6.727353419738316107197644431844194668702e-0014, 250 -1.427502986803861372125234355906790573422e-0016, 251 2.020392498726806769468143219616642940371e-0019, 252 -1.761371948595104156753045457888272716340e-0022, 253 7.352828391941157905175042420249225115816e-0026, 254 1.0e0, /* d1 */ 255 5.029187436727947764916247076102283399442e-0003, 256 1.102693095808242775074856548927801750627e-0005, 257 1.268035774543174837829534603830227216291e-0008, 258 6.579416271766610825192542295821308730206e-0012, 259 }; 260 261 #define c0 Cy1 262 #define d0 (Cy1 + 4) 263 #define c1 (Cy1 + 9) 264 #define d1 (Cy1 + 21) 265 266 /* core of j0f computation; assumes fx is finite */ 267 static double 268 __k_j0f(float fx) 269 { 270 double x, z, s, c, ss, cc, r, t, p0, q0; 271 int ix, i; 272 273 ix = *(int *)&fx & ~0x80000000; 274 x = fabs((double)fx); 275 276 if (ix > 0x41000000) { 277 /* x > 8; see comments in j0.c */ 278 s = sin(x); 279 c = cos(x); 280 281 if (signbit(s) != signbit(c)) { 282 ss = s - c; 283 cc = -cos(x + x) / ss; 284 } else { 285 cc = s + c; 286 ss = -cos(x + x) / cc; 287 } 288 289 if (ix > 0x501502f9) { 290 /* x > 1.0e10 */ 291 p0 = one; 292 q0 = neighth / x; 293 } else { 294 t = eight / x; 295 z = t * t; 296 p0 = (pr[0] + z * (pr[1] + z * (pr[2] + z * (pr[3] + z * 297 (pr[4] + z * (pr[5] + z * pr[6])))))) / (ps[0] + z * 298 (ps[1] + z * (ps[2] + z * (ps[3] + z * (ps[4] + z * 299 (ps[5] + z)))))); 300 q0 = ((qr[0] + z * (qr[1] + z * (qr[2] + z * (qr[3] + 301 z * (qr[4] + z * (qr[5] + z * qr[6])))))) / (qs[0] + 302 z * (qs[1] + z * (qs[2] + z * (qs[3] + z * (qs[4] + 303 z * (qs[5] + z))))))) * t; 304 } 305 306 return (isqrtpi * (p0 * cc - q0 * ss) / sqrt(x)); 307 } 308 309 if (ix <= 0x3727c5ac) { 310 /* x <= 1.0e-5 */ 311 if (ix <= 0x219392ef) /* x <= 1.0e-18 */ 312 return (one - x); 313 314 return (one - x * x * quarter); 315 } 316 317 z = x * x; 318 319 if (ix <= 0x3fa3d70a) { 320 /* x <= 1.28 */ 321 r = r0[0] + z * (r0[1] + z * (r0[2] + z * r0[3])); 322 s = s0[0] + z * (s0[1] + z * (s0[2] + z * s0[3])); 323 return (one + z * (r / s)); 324 } 325 326 r = r1[8]; 327 s = s1[8]; 328 329 for (i = 7; i >= 0; i--) { 330 r = r * z + r1[i]; 331 s = s * z + s1[i]; 332 } 333 334 return (r / s); 335 } 336 337 float 338 j0f(float fx) 339 { 340 float f; 341 int ix; 342 343 #if defined(__i386) && !defined(__amd64) 344 int rp; 345 #endif 346 347 ix = *(int *)&fx & ~0x80000000; 348 349 if (ix >= 0x7f800000) { /* nan or inf */ 350 if (ix > 0x7f800000) 351 return (fx * fx); 352 353 return (zerof); 354 } 355 356 #if defined(__i386) && !defined(__amd64) 357 rp = __swapRP(fp_extended); 358 #endif 359 f = (float)__k_j0f(fx); 360 #if defined(__i386) && !defined(__amd64) 361 if (rp != fp_extended) 362 (void) __swapRP(rp); 363 #endif 364 return (f); 365 } 366 367 /* core of y0f computation; assumes fx is finite and positive */ 368 static double 369 __k_y0f(float fx) 370 { 371 double x, z, s, c, ss, cc, t, p0, q0, u, v; 372 int ix, i; 373 374 ix = *(int *)&fx; 375 x = (double)fx; 376 377 if (ix > 0x41000000) { 378 /* x > 8; see comments in j0.c */ 379 s = sin(x); 380 c = cos(x); 381 382 if (signbit(s) != signbit(c)) { 383 ss = s - c; 384 cc = -cos(x + x) / ss; 385 } else { 386 cc = s + c; 387 ss = -cos(x + x) / cc; 388 } 389 390 if (ix > 0x501502f9) { 391 /* x > 1.0e10 */ 392 p0 = one; 393 q0 = neighth / x; 394 } else { 395 t = eight / x; 396 z = t * t; 397 p0 = (pr[0] + z * (pr[1] + z * (pr[2] + z * (pr[3] + z * 398 (pr[4] + z * (pr[5] + z * pr[6])))))) / (ps[0] + z * 399 (ps[1] + z * (ps[2] + z * (ps[3] + z * (ps[4] + z * 400 (ps[5] + z)))))); 401 q0 = ((qr[0] + z * (qr[1] + z * (qr[2] + z * (qr[3] + 402 z * (qr[4] + z * (qr[5] + z * qr[6])))))) / (qs[0] + 403 z * (qs[1] + z * (qs[2] + z * (qs[3] + z * (qs[4] + 404 z * (qs[5] + z))))))) * t; 405 } 406 407 return (isqrtpi * (p0 * ss + q0 * cc) / sqrt(x)); 408 } 409 410 if (ix <= 0x219392ef) /* x <= 1.0e-18 */ 411 return (u0[0] + tpi * log(x)); 412 413 z = x * x; 414 u = u0[12]; 415 416 for (i = 11; i >= 0; i--) 417 u = u * z + u0[i]; 418 419 v = v0[0] + z * (v0[1] + z * (v0[2] + z * (v0[3] + z * v0[4]))); 420 return (u / v + tpi * (__k_j0f(fx) * log(x))); 421 } 422 423 float 424 y0f(float fx) 425 { 426 float f; 427 int ix; 428 429 #if defined(__i386) && !defined(__amd64) 430 int rp; 431 #endif 432 433 ix = *(int *)&fx; 434 435 if ((ix & ~0x80000000) > 0x7f800000) /* nan */ 436 return (fx * fx); 437 438 if (ix <= 0) { /* zero or negative */ 439 if ((ix << 1) == 0) 440 return (-onef / zerof); 441 442 return (zerof / zerof); 443 } 444 445 if (ix == 0x7f800000) /* +inf */ 446 return (zerof); 447 448 #if defined(__i386) && !defined(__amd64) 449 rp = __swapRP(fp_extended); 450 #endif 451 f = (float)__k_y0f(fx); 452 #if defined(__i386) && !defined(__amd64) 453 if (rp != fp_extended) 454 (void) __swapRP(rp); 455 #endif 456 return (f); 457 } 458 459 /* core of j1f computation; assumes fx is finite */ 460 static double 461 __k_j1f(float fx) 462 { 463 double x, z, s, c, ss, cc, r, t, p1, q1; 464 int i, ix, sgn; 465 466 ix = *(int *)&fx; 467 sgn = (unsigned)ix >> 31; 468 ix &= ~0x80000000; 469 x = fabs((double)fx); 470 471 if (ix > 0x41000000) { 472 /* x > 8; see comments in j1.c */ 473 s = sin(x); 474 c = cos(x); 475 476 if (signbit(s) != signbit(c)) { 477 cc = s - c; 478 ss = cos(x + x) / cc; 479 } else { 480 ss = -s - c; 481 cc = cos(x + x) / ss; 482 } 483 484 if (ix > 0x501502f9) { 485 /* x > 1.0e10 */ 486 p1 = one; 487 q1 = three8 / x; 488 } else { 489 t = eight / x; 490 z = t * t; 491 p1 = (pr0[0] + z * (pr0[1] + z * (pr0[2] + z * (pr0[3] + 492 z * (pr0[4] + z * pr0[5]))))) / (ps0[0] + z * 493 (ps0[1] + z * (ps0[2] + z * (ps0[3] + z * (ps0[4] + 494 z * (ps0[5] + z)))))); 495 q1 = ((qr0[0] + z * (qr0[1] + z * (qr0[2] + z * 496 (qr0[3] + z * (qr0[4] + z * qr0[5]))))) / (qs0[0] + 497 z * (qs0[1] + z * (qs0[2] + z * (qs0[3] + z * 498 (qs0[4] + z * (qs0[5] + z))))))) * t; 499 } 500 501 t = isqrtpi * (p1 * cc - q1 * ss) / sqrt(x); 502 return ((sgn) ? -t : t); 503 } 504 505 if (ix <= 0x3727c5ac) { 506 /* x <= 1.0e-5 */ 507 if (ix <= 0x219392ef) /* x <= 1.0e-18 */ 508 t = half * x; 509 else 510 t = x * (half + neighth * x * x); 511 512 return ((sgn) ? -t : t); 513 } 514 515 z = x * x; 516 517 if (ix < 0x3fa3d70a) { 518 /* x < 1.28 */ 519 r = a0[0] + z * (a0[1] + z * (a0[2] + z * a0[3])); 520 s = b0[0] + z * (b0[1] + z * (b0[2] + z * b0[3])); 521 t = x * half + x * (z * (r / s)); 522 } else { 523 r = a1[11]; 524 525 for (i = 10; i >= 0; i--) 526 r = r * z + a1[i]; 527 528 s = b1[0] + z * (b1[1] + z * (b1[2] + z * (b1[3] + z * b1[4]))); 529 t = x * (r / s); 530 } 531 532 return ((sgn) ? -t : t); 533 } 534 535 float 536 j1f(float fx) 537 { 538 float f; 539 int ix; 540 541 #if defined(__i386) && !defined(__amd64) 542 int rp; 543 #endif 544 545 ix = *(int *)&fx & ~0x80000000; 546 547 if (ix >= 0x7f800000) /* nan or inf */ 548 return (onef / fx); 549 550 #if defined(__i386) && !defined(__amd64) 551 rp = __swapRP(fp_extended); 552 #endif 553 f = (float)__k_j1f(fx); 554 #if defined(__i386) && !defined(__amd64) 555 if (rp != fp_extended) 556 (void) __swapRP(rp); 557 #endif 558 return (f); 559 } 560 561 /* core of y1f computation; assumes fx is finite and positive */ 562 static double 563 __k_y1f(float fx) 564 { 565 double x, z, s, c, ss, cc, u, v, p1, q1, t; 566 int i, ix; 567 568 ix = *(int *)&fx; 569 x = (double)fx; 570 571 if (ix > 0x41000000) { 572 /* x > 8; see comments in j1.c */ 573 s = sin(x); 574 c = cos(x); 575 576 if (signbit(s) != signbit(c)) { 577 cc = s - c; 578 ss = cos(x + x) / cc; 579 } else { 580 ss = -s - c; 581 cc = cos(x + x) / ss; 582 } 583 584 if (ix > 0x501502f9) { 585 /* x > 1.0e10 */ 586 p1 = one; 587 q1 = three8 / x; 588 } else { 589 t = eight / x; 590 z = t * t; 591 p1 = (pr0[0] + z * (pr0[1] + z * (pr0[2] + z * (pr0[3] + 592 z * (pr0[4] + z * pr0[5]))))) / (ps0[0] + z * 593 (ps0[1] + z * (ps0[2] + z * (ps0[3] + z * (ps0[4] + 594 z * (ps0[5] + z)))))); 595 q1 = ((qr0[0] + z * (qr0[1] + z * (qr0[2] + z * 596 (qr0[3] + z * (qr0[4] + z * qr0[5]))))) / (qs0[0] + 597 z * (qs0[1] + z * (qs0[2] + z * (qs0[3] + z * 598 (qs0[4] + z * (qs0[5] + z))))))) * t; 599 } 600 601 return (isqrtpi * (p1 * ss + q1 * cc) / sqrt(x)); 602 } 603 604 if (ix <= 0x219392ef) /* x <= 1.0e-18 */ 605 return (-tpi / x); 606 607 z = x * x; 608 609 if (ix < 0x3fa3d70a) { 610 /* x < 1.28 */ 611 u = c0[0] + z * (c0[1] + z * (c0[2] + z * c0[3])); 612 v = d0[0] + z * (d0[1] + z * (d0[2] + z * (d0[3] + z * d0[4]))); 613 } else { 614 u = c1[11]; 615 616 for (i = 10; i >= 0; i--) 617 u = u * z + c1[i]; 618 619 v = d1[0] + z * (d1[1] + z * (d1[2] + z * (d1[3] + z * d1[4]))); 620 } 621 622 return (x * (u / v) + tpi * (__k_j1f(fx) * log(x) - one / x)); 623 } 624 625 float 626 y1f(float fx) 627 { 628 float f; 629 int ix; 630 631 #if defined(__i386) && !defined(__amd64) 632 int rp; 633 #endif 634 635 ix = *(int *)&fx; 636 637 if ((ix & ~0x80000000) > 0x7f800000) /* nan */ 638 return (fx * fx); 639 640 if (ix <= 0) { /* zero or negative */ 641 if ((ix << 1) == 0) 642 return (-onef / zerof); 643 644 return (zerof / zerof); 645 } 646 647 if (ix == 0x7f800000) /* +inf */ 648 return (zerof); 649 650 #if defined(__i386) && !defined(__amd64) 651 rp = __swapRP(fp_extended); 652 #endif 653 f = (float)__k_y1f(fx); 654 #if defined(__i386) && !defined(__amd64) 655 if (rp != fp_extended) 656 (void) __swapRP(rp); 657 #endif 658 return (f); 659 } 660 661 float 662 jnf(int n, float fx) 663 { 664 double a, b, temp, x, z, w, t, q0, q1, h; 665 float f; 666 int i, ix, sgn, m, k; 667 668 #if defined(__i386) && !defined(__amd64) 669 int rp; 670 #endif 671 672 if (n < 0) { 673 n = -n; 674 fx = -fx; 675 } 676 677 if (n == 0) 678 return (j0f(fx)); 679 680 if (n == 1) 681 return (j1f(fx)); 682 683 ix = *(int *)&fx; 684 sgn = (n & 1) ? ((unsigned)ix >> 31) : 0; 685 ix &= ~0x80000000; 686 687 if (ix >= 0x7f800000) { /* nan or inf */ 688 if (ix > 0x7f800000) 689 return (fx * fx); 690 691 return ((sgn) ? -zerof : zerof); 692 } 693 694 if ((ix << 1) == 0) 695 return ((sgn) ? -zerof : zerof); 696 697 #if defined(__i386) && !defined(__amd64) 698 rp = __swapRP(fp_extended); 699 #endif 700 fx = fabsf(fx); 701 x = (double)fx; 702 703 if ((double)n <= x) { 704 /* safe to use J(n+1,x) = 2n/x * J(n,x) - J(n-1,x) */ 705 a = __k_j0f(fx); 706 b = __k_j1f(fx); 707 708 for (i = 1; i < n; i++) { 709 temp = b; 710 b = b * ((double)(i + i) / x) - a; 711 a = temp; 712 } 713 714 f = (float)b; 715 #if defined(__i386) && !defined(__amd64) 716 if (rp != fp_extended) 717 (void) __swapRP(rp); 718 #endif 719 return ((sgn) ? -f : f); 720 } 721 722 if (ix < 0x3089705f) { 723 /* x < 1.0e-9; use J(n,x) = 1/n! * (x / 2)^n */ 724 if (n > 6) 725 n = 6; /* result underflows to zero for n >= 6 */ 726 727 b = t = half * x; 728 a = one; 729 730 for (i = 2; i <= n; i++) { 731 b *= t; 732 a *= (double)i; 733 } 734 735 b /= a; 736 } else { 737 /* BEGIN CSTYLED */ 738 /* 739 * Use the backward recurrence: 740 * 741 * x x^2 x^2 742 * J(n,x)/J(n-1,x) = ---- - ------ - ------ ..... 743 * 2n 2(n+1) 2(n+2) 744 * 745 * Let w = 2n/x and h = 2/x. Then the above quotient 746 * is equal to the continued fraction: 747 * 1 748 * = ----------------------- 749 * 1 750 * w - ----------------- 751 * 1 752 * w+h - --------- 753 * w+2h - ... 754 * 755 * To determine how many terms are needed, run the 756 * recurrence 757 * 758 * Q(0) = w, 759 * Q(1) = w(w+h) - 1, 760 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2). 761 * 762 * Then when Q(k) > 1e4, k is large enough for single 763 * precision. 764 */ 765 /* END CSTYLED */ 766 /* XXX NOT DONE - rework this */ 767 w = (n + n) / x; 768 h = two / x; 769 q0 = w; 770 z = w + h; 771 q1 = w * z - one; 772 k = 1; 773 774 while (q1 < big) { 775 k++; 776 z += h; 777 temp = z * q1 - q0; 778 q0 = q1; 779 q1 = temp; 780 } 781 782 m = n + n; 783 t = zero; 784 785 for (i = (n + k) << 1; i >= m; i -= 2) 786 t = one / ((double)i / x - t); 787 788 a = t; 789 b = one; 790 791 /* 792 * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) 793 * hence, if n*(log(2n/x)) > ... 794 * single 8.8722839355e+01 795 * double 7.09782712893383973096e+02 796 * then recurrent value may overflow and the result is 797 * likely underflow to zero 798 */ 799 temp = (double)n; 800 temp *= log((two / x) * temp); 801 802 if (temp < 7.09782712893383973096e+02) { 803 for (i = n - 1; i > 0; i--) { 804 temp = b; 805 b = b * ((double)(i + i) / x) - a; 806 a = temp; 807 } 808 } else { 809 for (i = n - 1; i > 0; i--) { 810 temp = b; 811 b = b * ((double)(i + i) / x) - a; 812 a = temp; 813 814 if (b > 1.0e100) { 815 a /= b; 816 t /= b; 817 b = one; 818 } 819 } 820 } 821 822 b = (t * __k_j0f(fx) / b); 823 } 824 825 f = (float)b; 826 #if defined(__i386) && !defined(__amd64) 827 if (rp != fp_extended) 828 (void) __swapRP(rp); 829 #endif 830 return ((sgn) ? -f : f); 831 } 832 833 float 834 ynf(int n, float fx) 835 { 836 double a, b, temp, x; 837 float f; 838 int i, sign, ix; 839 840 #if defined(__i386) && !defined(__amd64) 841 int rp; 842 #endif 843 844 sign = 0; 845 846 if (n < 0) { 847 n = -n; 848 849 if (n & 1) 850 sign = 1; 851 } 852 853 if (n == 0) 854 return (y0f(fx)); 855 856 if (n == 1) 857 return ((sign) ? -y1f(fx) : y1f(fx)); 858 859 ix = *(int *)&fx; 860 861 if ((ix & ~0x80000000) > 0x7f800000) /* nan */ 862 return (fx * fx); 863 864 if (ix <= 0) { /* zero or negative */ 865 if ((ix << 1) == 0) 866 return (-onef / zerof); 867 868 return (zerof / zerof); 869 } 870 871 if (ix == 0x7f800000) /* +inf */ 872 return (zerof); 873 874 #if defined(__i386) && !defined(__amd64) 875 rp = __swapRP(fp_extended); 876 #endif 877 a = __k_y0f(fx); 878 b = __k_y1f(fx); 879 x = (double)fx; 880 881 for (i = 1; i < n; i++) { 882 temp = b; 883 b *= (double)(i + i) / x; 884 885 if (b <= -DBL_MAX) 886 break; 887 888 b -= a; 889 a = temp; 890 } 891 892 f = (float)b; 893 #if defined(__i386) && !defined(__amd64) 894 if (rp != fp_extended) 895 (void) __swapRP(rp); 896 #endif 897 return ((sign) ? -f : f); 898 }