Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/R/__sincosf.c
+++ new/usr/src/lib/libm/common/R/__sincosf.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 31 #include "libm.h"
31 32
32 -/* INDENT OFF */
33 +
33 34 /*
34 35 * void __k_sincosf(double x, float *s, float *c);
35 36 * kernel (float) sincos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
36 37 * Input x is in double and assumed to be bounded by ~pi/4 in magnitude.
37 38 *
38 39 * Method: Let z = x * x, then
39 40 * S(x) = x(S0 + S1*z)(S2 + S3*z + z*z)
40 41 * C(x) = (C0 + C1*z + C2*z*z) * (C3 + C4*z + z*z)
41 42 * where
42 43 * S0 = 1.85735322054308378716204874632872525989806770558e-0003
43 44 * S1 = -1.95035094218403635082921458859320791358115801259e-0004
44 45 * S2 = 5.38400550766074785970952495168558701485841707252e+0002
45 46 * S3 = -3.31975110777873728964197739157371509422022905947e+0001
46 47 * C0 = 1.09349482127188401868272000389539985058873853699e-0003
47 48 * C1 = -5.03324285989964979398034700054920226866107675091e-0004
48 49 * C2 = 2.43792880266971107750418061559602239831538067410e-0005
49 50 * C3 = 9.14499072605666582228127405245558035523741471271e+0002
50 51 * C4 = -3.63151270591815439197122504991683846785293207730e+0001
↓ open down ↓ |
8 lines elided |
↑ open up ↑ |
51 52 *
52 53 * The remez error in S is bound by |(sin(x) - S(x))/x| < 2**(-28.2)
53 54 * The remez error in C is bound by |cos(x) - C(x)| < 2**(-34.2)
54 55 *
55 56 * Constants:
56 57 * The hexadecimal values are the intended ones for the following constants.
57 58 * The decimal values may be used, provided that the compiler will convert
58 59 * from decimal to binary accurately enough to produce the hexadecimal values
59 60 * shown.
60 61 */
61 -/* INDENT ON */
62 62
63 63 static const double q[] = {
64 -/* S0 = */ 1.85735322054308378716204874632872525989806770558e-0003,
64 +/* S0 = */
65 + 1.85735322054308378716204874632872525989806770558e-0003,
65 66 /* S1 = */ -1.95035094218403635082921458859320791358115801259e-0004,
66 -/* S2 = */ 5.38400550766074785970952495168558701485841707252e+0002,
67 +/* S2 = */ 5.38400550766074785970952495168558701485841707252e+0002,
67 68 /* S3 = */ -3.31975110777873728964197739157371509422022905947e+0001,
68 -/* C0 = */ 1.09349482127188401868272000389539985058873853699e-0003,
69 +/* C0 = */ 1.09349482127188401868272000389539985058873853699e-0003,
69 70 /* C1 = */ -5.03324285989964979398034700054920226866107675091e-0004,
70 -/* C2 = */ 2.43792880266971107750418061559602239831538067410e-0005,
71 -/* C3 = */ 9.14499072605666582228127405245558035523741471271e+0002,
72 -/* C4 = */ -3.63151270591815439197122504991683846785293207730e+0001,
73 -};
74 -
75 -
76 -#define S0 q[0]
77 -#define S1 q[1]
78 -#define S2 q[2]
79 -#define S3 q[3]
80 -#define C0 q[4]
81 -#define C1 q[5]
82 -#define C2 q[6]
83 -#define C3 q[7]
84 -#define C4 q[8]
71 +/* C2 = */ 2.43792880266971107750418061559602239831538067410e-0005,
72 +/* C3 = */ 9.14499072605666582228127405245558035523741471271e+0002,
73 +/* C4 = */ -3.63151270591815439197122504991683846785293207730e+0001, };
74 +
75 +#define S0 q[0]
76 +#define S1 q[1]
77 +#define S2 q[2]
78 +#define S3 q[3]
79 +#define C0 q[4]
80 +#define C1 q[5]
81 +#define C2 q[6]
82 +#define C3 q[7]
83 +#define C4 q[8]
85 84
86 85 void
87 -__k_sincosf(double x, float *s, float *c) {
86 +__k_sincosf(double x, float *s, float *c)
87 +{
88 88 double z;
89 89 int hx;
90 90
91 - hx = ((int *) &x)[HIWORD]; /* hx = leading x */
91 + hx = ((int *)&x)[HIWORD]; /* hx = leading x */
92 +
92 93 /* small argument */
93 94 if ((hx & ~0x80000000) < 0x3f100000) { /* if |x| < 2**-14 */
94 - *s = (float) x; *c = (float) 1;
95 - if ((int) x == 0) /* raise inexact if x != 0 */
95 + *s = (float)x;
96 + *c = (float)1;
97 +
98 + if ((int)x == 0) /* raise inexact if x != 0 */
96 99 return;
97 100 }
101 +
98 102 z = x * x;
99 - *s = (float) ((x * (S0 + z * S1)) * (S2 + z * (S3 + z)));
100 - *c = (float) (((C0 + z * C1) + (z * z) * C2) * (C3 + z * (C4 + z)));
103 + *s = (float)((x * (S0 + z * S1)) * (S2 + z * (S3 + z)));
104 + *c = (float)(((C0 + z * C1) + (z * z) * C2) * (C3 + z * (C4 + z)));
101 105 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX