Print this page
11210 libm should be cstyle(1ONBLD) clean

Split Close
Expand all
Collapse all
          --- old/usr/src/lib/libm/common/R/__sincosf.c
          +++ new/usr/src/lib/libm/common/R/__sincosf.c
↓ open down ↓ 14 lines elided ↑ open up ↑
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24   24   */
       25 +
  25   26  /*
  26   27   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27   28   * Use is subject to license terms.
  28   29   */
  29   30  
  30   31  #include "libm.h"
  31   32  
  32      -/* INDENT OFF */
       33 +
  33   34  /*
  34   35   * void __k_sincosf(double x, float *s, float *c);
  35   36   * kernel (float) sincos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
  36   37   * Input x is in double and assumed to be bounded by ~pi/4 in magnitude.
  37   38   *
  38   39   * Method: Let z = x * x, then
  39   40   *      S(x) = x(S0 + S1*z)(S2 + S3*z + z*z)
  40   41   *      C(x) = (C0 + C1*z + C2*z*z) * (C3 + C4*z + z*z)
  41   42   * where
  42   43   *      S0 =   1.85735322054308378716204874632872525989806770558e-0003
↓ open down ↓ 8 lines elided ↑ open up ↑
  51   52   *
  52   53   * The remez error in S is bound by  |(sin(x) - S(x))/x| < 2**(-28.2)
  53   54   * The remez error in C is bound by  |cos(x) - C(x)| < 2**(-34.2)
  54   55   *
  55   56   * Constants:
  56   57   * The hexadecimal values are the intended ones for the following constants.
  57   58   * The decimal values may be used, provided that the compiler will convert
  58   59   * from decimal to binary accurately enough to produce the hexadecimal values
  59   60   * shown.
  60   61   */
  61      -/* INDENT ON */
  62   62  
  63   63  static const double q[] = {
  64      -/* S0 = */  1.85735322054308378716204874632872525989806770558e-0003,
       64 +/* S0 = */
       65 +        1.85735322054308378716204874632872525989806770558e-0003,
  65   66  /* S1 = */ -1.95035094218403635082921458859320791358115801259e-0004,
  66      -/* S2 = */  5.38400550766074785970952495168558701485841707252e+0002,
       67 +/* S2 = */ 5.38400550766074785970952495168558701485841707252e+0002,
  67   68  /* S3 = */ -3.31975110777873728964197739157371509422022905947e+0001,
  68      -/* C0 = */  1.09349482127188401868272000389539985058873853699e-0003,
       69 +/* C0 = */ 1.09349482127188401868272000389539985058873853699e-0003,
  69   70  /* C1 = */ -5.03324285989964979398034700054920226866107675091e-0004,
  70      -/* C2 = */  2.43792880266971107750418061559602239831538067410e-0005,
  71      -/* C3 = */  9.14499072605666582228127405245558035523741471271e+0002,
  72      -/* C4 = */ -3.63151270591815439197122504991683846785293207730e+0001,
  73      -};
  74      -
  75      -
  76      -#define S0      q[0]
  77      -#define S1      q[1]
  78      -#define S2      q[2]
  79      -#define S3      q[3]
  80      -#define C0      q[4]
  81      -#define C1      q[5]
  82      -#define C2      q[6]
  83      -#define C3      q[7]
  84      -#define C4      q[8]
       71 +/* C2 = */ 2.43792880266971107750418061559602239831538067410e-0005,
       72 +/* C3 = */ 9.14499072605666582228127405245558035523741471271e+0002,
       73 +/* C4 = */ -3.63151270591815439197122504991683846785293207730e+0001, };
       74 +
       75 +#define S0              q[0]
       76 +#define S1              q[1]
       77 +#define S2              q[2]
       78 +#define S3              q[3]
       79 +#define C0              q[4]
       80 +#define C1              q[5]
       81 +#define C2              q[6]
       82 +#define C3              q[7]
       83 +#define C4              q[8]
  85   84  
  86   85  void
  87      -__k_sincosf(double x, float *s, float *c) {
       86 +__k_sincosf(double x, float *s, float *c)
       87 +{
  88   88          double z;
  89   89          int hx;
  90   90  
  91      -        hx = ((int *) &x)[HIWORD];      /* hx = leading x */
       91 +        hx = ((int *)&x)[HIWORD];               /* hx = leading x */
       92 +
  92   93          /* small argument */
  93   94          if ((hx & ~0x80000000) < 0x3f100000) {  /* if |x| < 2**-14 */
  94      -                *s = (float) x; *c = (float) 1;
  95      -                if ((int) x == 0)       /* raise inexact if x != 0 */
       95 +                *s = (float)x;
       96 +                *c = (float)1;
       97 +
       98 +                if ((int)x == 0)        /* raise inexact if x != 0 */
  96   99                          return;
  97  100          }
      101 +
  98  102          z = x * x;
  99      -        *s = (float) ((x * (S0 + z * S1)) * (S2 + z * (S3 + z)));
 100      -        *c = (float) (((C0 + z * C1) + (z * z) * C2) * (C3 + z * (C4 + z)));
      103 +        *s = (float)((x * (S0 + z * S1)) * (S2 + z * (S3 + z)));
      104 +        *c = (float)(((C0 + z * C1) + (z * z) * C2) * (C3 + z * (C4 + z)));
 101  105  }
    
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX