Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/R/__cosf.c
+++ new/usr/src/lib/libm/common/R/__cosf.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 31 #include "libm.h"
31 32
32 -/* INDENT OFF */
33 +
33 34 /*
34 35 * float __k_cos(double x);
35 36 * kernel (float) cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
36 37 * Input x is in double and assumed to be bounded by ~pi/4 in magnitude.
37 38 *
38 39 * Method: Let z = x * x, then
39 40 * C(x) = (C0 + C1*z + C2*z*z) * (C3 + C4*z + z*z)
40 41 * where
41 42 * C0 = 1.09349482127188401868272000389539985058873853699e-0003
42 43 * C1 = -5.03324285989964979398034700054920226866107675091e-0004
43 44 * C2 = 2.43792880266971107750418061559602239831538067410e-0005
44 45 * C3 = 9.14499072605666582228127405245558035523741471271e+0002
↓ open down ↓ |
2 lines elided |
↑ open up ↑ |
45 46 * C4 = -3.63151270591815439197122504991683846785293207730e+0001
46 47 *
47 48 * The remez error is bound by |cos(x) - C(x)| < 2**(-34.2)
48 49 *
49 50 * Constants:
50 51 * The hexadecimal values are the intended ones for the following constants.
51 52 * The decimal values may be used, provided that the compiler will convert
52 53 * from decimal to binary accurately enough to produce the hexadecimal values
53 54 * shown.
54 55 */
55 -/* INDENT ON */
56 56
57 57 static const double q[] = {
58 -/* C0 = */ 1.09349482127188401868272000389539985058873853699e-0003,
59 -/* C1 = */ -5.03324285989964979398034700054920226866107675091e-0004,
60 -/* C2 = */ 2.43792880266971107750418061559602239831538067410e-0005,
61 -/* C3 = */ 9.14499072605666582228127405245558035523741471271e+0002,
62 -/* C4 = */ -3.63151270591815439197122504991683846785293207730e+0001,
63 -};
64 -
65 -#define C0 q[0]
66 -#define C1 q[1]
67 -#define C2 q[2]
68 -#define C3 q[3]
69 -#define C4 q[4]
58 +/* C0 = */
59 + 1.09349482127188401868272000389539985058873853699e-0003,
60 +/* C1 = */ -5.03324285989964979398034700054920226866107675091e-0004,
61 +/* C2 = */ 2.43792880266971107750418061559602239831538067410e-0005,
62 +/* C3 = */ 9.14499072605666582228127405245558035523741471271e+0002,
63 +/* C4 = */ -3.63151270591815439197122504991683846785293207730e+0001, };
64 +
65 +#define C0 q[0]
66 +#define C1 q[1]
67 +#define C2 q[2]
68 +#define C3 q[3]
69 +#define C4 q[4]
70 70
71 71 float
72 -__k_cosf(double x) {
72 +__k_cosf(double x)
73 +{
73 74 float ft;
74 75 double z;
75 76 int hx;
76 77
77 - hx = ((int *) &x)[HIWORD]; /* hx = leading x */
78 + hx = ((int *)&x)[HIWORD]; /* hx = leading x */
79 +
78 80 if ((hx & ~0x80000000) < 0x3f100000) { /* |x| < 2**-14 */
79 - ft = (float) 1;
80 - if (((int) x) == 0) /* raise inexact if x != 0 */
81 + ft = (float)1;
82 +
83 + if (((int)x) == 0) /* raise inexact if x != 0 */
81 84 return (ft);
82 85 }
86 +
83 87 z = x * x;
84 - ft = (float) (((C0 + z * C1) + (z * z) * C2) * (C3 + z * (C4 + z)));
88 + ft = (float)(((C0 + z * C1) + (z * z) * C2) * (C3 + z * (C4 + z)));
85 89 return (ft);
86 90 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX