Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/Q/tanl.c
+++ new/usr/src/lib/libm/common/Q/tanl.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 31 /*
31 32 * tanl(x)
32 33 * Table look-up algorithm by K.C. Ng, November, 1989.
33 34 *
34 35 * kernel function:
35 36 * __k_tanl ... tangent function on [-pi/4,pi/4]
36 37 * __rem_pio2l ... argument reduction routine
37 38 *
38 39 * Method.
39 40 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
40 41 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
41 42 * [-pi/2 , +pi/2], and let n = k mod 4.
42 43 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
43 44 *
44 45 * n sin(x) cos(x) tan(x)
45 46 * ----------------------------------------------------------
46 47 * 0 S C S/C
47 48 * 1 C -S -C/S
48 49 * 2 -S -C S/C
49 50 * 3 -C S -C/S
50 51 * ----------------------------------------------------------
51 52 *
52 53 * Special cases:
53 54 * Let trig be any of sin, cos, or tan.
54 55 * trig(+-INF) is NaN, with signals;
55 56 * trig(NaN) is that NaN;
56 57 *
↓ open down ↓ |
22 lines elided |
↑ open up ↑ |
57 58 * Accuracy:
58 59 * computer TRIG(x) returns trig(x) nearly rounded.
59 60 */
60 61
61 62 #pragma weak __tanl = tanl
62 63
63 64 #include "libm.h"
64 65 #include "longdouble.h"
65 66
66 67 long double
67 -tanl(long double x) {
68 +tanl(long double x)
69 +{
68 70 long double y[2], z = 0.0L;
69 71 int n, ix;
70 72
71 - ix = *(int *) &x; /* High word of x */
73 + ix = *(int *)&x; /* High word of x */
72 74 ix &= 0x7fffffff;
73 - if (ix <= 0x3ffe9220) /* |x| ~< pi/4 */
75 +
76 + if (ix <= 0x3ffe9220) { /* |x| ~< pi/4 */
74 77 return (__k_tanl(x, z, 0));
75 - else if (ix >= 0x7fff0000) /* trig(Inf or NaN) is NaN */
78 + } else if (ix >= 0x7fff0000) { /* trig(Inf or NaN) is NaN */
76 79 return (x - x);
77 - else { /* argument reduction needed */
80 + } else { /* argument reduction needed */
78 81 n = __rem_pio2l(x, y);
79 82 return (__k_tanl(y[0], y[1], (n & 1)));
80 83 }
81 84 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX