Print this page
    
11210 libm should be cstyle(1ONBLD) clean
    
      
        | Split | Close | 
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/lib/libm/common/Q/sinpil.c
          +++ new/usr/src/lib/libm/common/Q/sinpil.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  
    | ↓ open down ↓ | 14 lines elided | ↑ open up ↑ | 
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24   24   */
       25 +
  25   26  /*
  26   27   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27   28   * Use is subject to license terms.
  28   29   */
  29   30  
  30   31  /*
  31   32   * long double sinpil(long double x),
  32   33   * return long double precision sinl(pi*x).
  33   34   *
  34   35   * Algorithm, 10/17/2002, K.C. Ng
  35   36   * ------------------------------
  36   37   * Let y = |4x|, z = floor(y), and n = (int)(z mod 8.0) (displayed in binary).
  37   38   *      1. If y == z, then x is a multiple of pi/4. Return the following values:
  38   39   *             ---------------------------------------------------
  39   40   *               n  x mod 2    sin(x*pi)    cos(x*pi)   tan(x*pi)
  40   41   *             ---------------------------------------------------
  41   42   *              000  0.00       +0 ___       +1 ___      +0
  42   43   *              001  0.25       +\/0.5       +\/0.5      +1
  43   44   *              010  0.50       +1 ___       +0 ___      +inf
  44   45   *              011  0.75       +\/0.5       -\/0.5      -1
  45   46   *              100  1.00       -0 ___       -1 ___      +0
  46   47   *              101  1.25       -\/0.5       -\/0.5      +1
  47   48   *              110  1.50       -1 ___       -0 ___      +inf
  48   49   *              111  1.75       -\/0.5       +\/0.5      -1
  49   50   *             ---------------------------------------------------
  50   51   *      2. Otherwise,
  51   52   *             ---------------------------------------------------
  52   53   *               n     t        sin(x*pi)    cos(x*pi)   tan(x*pi)
  53   54   *             ---------------------------------------------------
  54   55   *              000  (y-z)/4     sinpi(t)     cospi(t)    tanpi(t)
  55   56   *              001  (z+1-y)/4   cospi(t)     sinpi(t)    1/tanpi(t)
  56   57   *              010  (y-z)/4     cospi(t)    -sinpi(t)   -1/tanpi(t)
  57   58   *              011  (z+1-y)/4   sinpi(t)    -cospi(t)   -tanpi(t)
  58   59   *              100  (y-z)/4    -sinpi(t)    -cospi(t)    tanpi(t)
  59   60   *              101  (z+1-y)/4  -cospi(t)    -sinpi(t)    1/tanpi(t)
  60   61   *              110  (y-z)/4    -cospi(t)     sinpi(t)   -1/tanpi(t)
  61   62   *              111  (z+1-y)/4  -sinpi(t)     cospi(t)   -tanpi(t)
  62   63   *             ---------------------------------------------------
  63   64   *
  
    | ↓ open down ↓ | 29 lines elided | ↑ open up ↑ | 
  64   65   * NOTE. This program compute sinpi/cospi(t<0.25) by __k_sin/cos(pi*t, 0.0).
  65   66   * This will return a result with error slightly more than one ulp (but less
  66   67   * than 2 ulp). If one wants accurate result,  one may break up pi*t in
  67   68   * high (tpi_h) and low (tpi_l) parts and call __k_sin/cos(tip_h, tip_lo)
  68   69   * instead.
  69   70   */
  70   71  
  71   72  #include "libm.h"
  72   73  #include "longdouble.h"
  73   74  
  74      -#define I(q, m) ((int *) &(q))[m]
  75      -#define U(q, m) ((unsigned *) &(q))[m]
       75 +#define I(q, m)                         ((int *)&(q))[m]
       76 +#define U(q, m)                         ((unsigned *)&(q))[m]
  76   77  #if defined(__LITTLE_ENDIAN) || defined(__x86)
  77      -#define LDBL_MOST_SIGNIF_I(ld)  ((I(ld, 2) << 16) | (0xffff & (I(ld, 1) >> 15)))
  78      -#define LDBL_LEAST_SIGNIF_U(ld) U(ld, 0)
  79      -#define PREC    64
  80      -#define PRECM1  63
  81      -#define PRECM2  62
       78 +#define LDBL_MOST_SIGNIF_I(ld)          ((I(ld, 2) << 16) | (0xffff & (I(ld, \
       79 +        1) >> 15)))
       80 +#define LDBL_LEAST_SIGNIF_U(ld)         U(ld, 0)
       81 +#define PREC                            64
       82 +#define PRECM1                          63
       83 +#define PRECM2                          62
       84 +
  82   85  static const long double twoPRECM2 = 9.223372036854775808000000000000000e+18L;
  83   86  #else
  84      -#define LDBL_MOST_SIGNIF_I(ld)  I(ld, 0)
  85      -#define LDBL_LEAST_SIGNIF_U(ld) U(ld, sizeof (long double) / sizeof (int) - 1)
  86      -#define PREC    113
  87      -#define PRECM1  112
  88      -#define PRECM2  111
       87 +#define LDBL_MOST_SIGNIF_I(ld)          I(ld, 0)
       88 +#define LDBL_LEAST_SIGNIF_U(ld)         U(ld, sizeof (long double) / \
       89 +        sizeof (int) - 1)
       90 +#define PREC                            113
       91 +#define PRECM1                          112
       92 +#define PRECM2                          111
       93 +
  89   94  static const long double twoPRECM2 = 5.192296858534827628530496329220096e+33L;
  90   95  #endif
  91   96  
  92      -static const long double
  93      -zero    = 0.0L,
  94      -quater  = 0.25L,
  95      -one     = 1.0L,
  96      -pi      = 3.141592653589793238462643383279502884197e+0000L,
  97      -sqrth   = 0.707106781186547524400844362104849039284835937688474,
  98      -tiny    = 1.0e-100;
       97 +static const long double zero = 0.0L,
       98 +        quater = 0.25L,
       99 +        one = 1.0L,
      100 +        pi = 3.141592653589793238462643383279502884197e+0000L,
      101 +        sqrth = 0.707106781186547524400844362104849039284835937688474,
      102 +        tiny = 1.0e-100;
  99  103  
 100  104  long double
 101      -sinpil(long double x) {
      105 +sinpil(long double x)
      106 +{
 102  107          long double y, z, t;
 103  108          int hx, n, k;
 104  109          unsigned lx;
 105  110  
 106  111          hx = LDBL_MOST_SIGNIF_I(x);
 107  112          lx = LDBL_LEAST_SIGNIF_U(x);
 108  113          k = ((hx & 0x7fff0000) >> 16) - 0x3fff;
      114 +
 109  115          if (k >= PRECM2) {              /* |x| >= 2**(Prec-2) */
 110      -                if (k >= 16384)
      116 +                if (k >= 16384) {
 111  117                          y = x - x;
 112      -                else {
 113      -                        if (k >= PREC)
      118 +                } else {
      119 +                        if (k >= PREC) {
 114  120                                  y = zero;
 115      -                        else if (k == PRECM1)
 116      -                                y = (lx & 1) == 0 ? zero: -zero;
 117      -                        else {  /* k = Prec - 2 */
      121 +                        } else if (k == PRECM1) {
      122 +                                y = (lx & 1) == 0 ? zero : -zero;
      123 +                        } else { /* k = Prec - 2 */
 118  124                                  y = (lx & 1) == 0 ? zero : one;
      125 +
 119  126                                  if ((lx & 2) != 0)
 120  127                                          y = -y;
 121  128                          }
 122  129                  }
 123      -        } else if (k < -2)      /* |x| < 0.25 */
      130 +        } else if (k < -2) {            /* |x| < 0.25 */
 124  131                  y = __k_sinl(pi * fabsl(x), zero);
 125      -        else {
      132 +        } else {
 126  133                  /* y = |4x|, z = floor(y), and n = (int)(z mod 8.0) */
 127  134                  y = 4.0L * fabsl(x);
      135 +
 128  136                  if (k < PRECM2) {
 129  137                          z = y + twoPRECM2;
 130  138                          n = LDBL_LEAST_SIGNIF_U(z) & 7; /* 3 LSb of z */
 131  139                          t = z - twoPRECM2;
 132  140                          k = 0;
 133      -                        if (t == y)
      141 +
      142 +                        if (t == y) {
 134  143                                  k = 1;
 135      -                        else if (t > y) {
      144 +                        } else if (t > y) {
 136  145                                  n -= 1;
 137  146                                  t = quater + (y - t) * quater;
 138      -                        } else
      147 +                        } else {
 139  148                                  t = (y - t) * quater;
 140      -                } else {        /* k = Prec-3 */
      149 +                        }
      150 +                } else {                                /* k = Prec-3 */
 141  151                          n = LDBL_LEAST_SIGNIF_U(y) & 7; /* 3 LSb of z */
 142  152                          k = 1;
 143  153                  }
 144      -                if (k) {        /* x = N/4 */
      154 +
      155 +                if (k) {                /* x = N/4 */
 145  156                          if ((n & 1) != 0)
 146  157                                  y = sqrth + tiny;
 147  158                          else
 148  159                                  y = (n & 2) == 0 ? zero : one;
      160 +
 149  161                          if ((n & 4) != 0)
 150  162                                  y = -y;
 151  163                  } else {
 152  164                          if ((n & 1) != 0)
 153  165                                  t = quater - t;
      166 +
 154  167                          if (((n + (n & 1)) & 2) == 0)
 155  168                                  y = __k_sinl(pi * t, zero);
 156  169                          else
 157  170                                  y = __k_cosl(pi * t, zero);
      171 +
 158  172                          if ((n & 4) != 0)
 159  173                                  y = -y;
 160  174                  }
 161  175          }
      176 +
 162  177          return (hx >= 0 ? y : -y);
 163  178  }
      179 +
 164  180  #undef U
 165  181  #undef LDBL_LEAST_SIGNIF_U
 166  182  #undef I
 167  183  #undef LDBL_MOST_SIGNIF_I
    
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX