Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/Q/sinl.c
+++ new/usr/src/lib/libm/common/Q/sinl.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 31 /*
31 32 * sinl(x)
32 33 * Table look-up algorithm by K.C. Ng, November, 1989.
33 34 *
34 35 * kernel function:
35 36 * __k_sinl ... sin function on [-pi/4,pi/4]
36 37 * __k_cosl ... cos function on [-pi/4,pi/4]
37 38 * __rem_pio2l ... argument reduction routine
38 39 *
39 40 * Method.
40 41 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
41 42 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
42 43 * [-pi/2 , +pi/2], and let n = k mod 4.
43 44 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
44 45 *
45 46 * n sin(x) cos(x) tan(x)
46 47 * ----------------------------------------------------------
47 48 * 0 S C S/C
48 49 * 1 C -S -C/S
49 50 * 2 -S -C S/C
50 51 * 3 -C S -C/S
51 52 * ----------------------------------------------------------
52 53 *
53 54 * Special cases:
54 55 * Let trig be any of sin, cos, or tan.
55 56 * trig(+-INF) is NaN, with signals;
56 57 * trig(NaN) is that NaN;
57 58 *
↓ open down ↓ |
23 lines elided |
↑ open up ↑ |
58 59 * Accuracy:
59 60 * computer TRIG(x) returns trig(x) nearly rounded.
60 61 */
61 62
62 63 #pragma weak __sinl = sinl
63 64
64 65 #include "libm.h"
65 66 #include "longdouble.h"
66 67
67 68 long double
68 -sinl(long double x) {
69 +sinl(long double x)
70 +{
69 71 long double y[2], z = 0.0L;
70 72 int n, ix;
71 73
72 - ix = *(int *) &x; /* High word of x */
74 + ix = *(int *)&x; /* High word of x */
73 75 ix &= 0x7fffffff;
74 - if (ix <= 0x3ffe9220) /* |x| ~< pi/4 */
76 +
77 + if (ix <= 0x3ffe9220) { /* |x| ~< pi/4 */
75 78 return (__k_sinl(x, z));
76 - else if (ix >= 0x7fff0000) /* sin(Inf or NaN) is NaN */
79 + } else if (ix >= 0x7fff0000) { /* sin(Inf or NaN) is NaN */
77 80 return (x - x);
78 - else { /* argument reduction needed */
81 + } else { /* argument reduction needed */
79 82 n = __rem_pio2l(x, y);
83 +
80 84 switch (n & 3) {
81 - case 0:
82 - return (__k_sinl(y[0], y[1]));
83 - case 1:
84 - return (__k_cosl(y[0], y[1]));
85 - case 2:
86 - return (-__k_sinl(y[0], y[1]));
87 - case 3:
88 - return (-__k_cosl(y[0], y[1]));
85 + case 0:
86 + return (__k_sinl(y[0], y[1]));
87 + case 1:
88 + return (__k_cosl(y[0], y[1]));
89 + case 2:
90 + return (-__k_sinl(y[0], y[1]));
91 + case 3:
92 + return (-__k_cosl(y[0], y[1]));
89 93 }
90 94 }
95 +
91 96 /* NOTREACHED */
92 - return 0.0L;
97 + return (0.0L);
93 98 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX