1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 /* 32 * sinl(x) 33 * Table look-up algorithm by K.C. Ng, November, 1989. 34 * 35 * kernel function: 36 * __k_sinl ... sin function on [-pi/4,pi/4] 37 * __k_cosl ... cos function on [-pi/4,pi/4] 38 * __rem_pio2l ... argument reduction routine 39 * 40 * Method. 41 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4]. 42 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in 43 * [-pi/2 , +pi/2], and let n = k mod 4. 44 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have 45 * 46 * n sin(x) cos(x) tan(x) 47 * ---------------------------------------------------------- 48 * 0 S C S/C 49 * 1 C -S -C/S 50 * 2 -S -C S/C 51 * 3 -C S -C/S 52 * ---------------------------------------------------------- 53 * 54 * Special cases: 55 * Let trig be any of sin, cos, or tan. 56 * trig(+-INF) is NaN, with signals; 57 * trig(NaN) is that NaN; 58 * 59 * Accuracy: 60 * computer TRIG(x) returns trig(x) nearly rounded. 61 */ 62 63 #pragma weak __sinl = sinl 64 65 #include "libm.h" 66 #include "longdouble.h" 67 68 long double 69 sinl(long double x) 70 { 71 long double y[2], z = 0.0L; 72 int n, ix; 73 74 ix = *(int *)&x; /* High word of x */ 75 ix &= 0x7fffffff; 76 77 if (ix <= 0x3ffe9220) { /* |x| ~< pi/4 */ 78 return (__k_sinl(x, z)); 79 } else if (ix >= 0x7fff0000) { /* sin(Inf or NaN) is NaN */ 80 return (x - x); 81 } else { /* argument reduction needed */ 82 n = __rem_pio2l(x, y); 83 84 switch (n & 3) { 85 case 0: 86 return (__k_sinl(y[0], y[1])); 87 case 1: 88 return (__k_cosl(y[0], y[1])); 89 case 2: 90 return (-__k_sinl(y[0], y[1])); 91 case 3: 92 return (-__k_cosl(y[0], y[1])); 93 } 94 } 95 96 /* NOTREACHED */ 97 return (0.0L); 98 }