Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/Q/sinhl.c
+++ new/usr/src/lib/libm/common/Q/sinhl.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 31 #pragma weak __sinhl = sinhl
31 32
32 33 #include "libm.h"
33 34 #include "longdouble.h"
34 35
35 36 /*
36 37 * sinhl(X)
37 38 * RETURN THE HYPERBOLIC SINE OF X
38 39 *
39 40 * Method :
40 41 * 1. reduce x to non-negative by sinhl(-x) = - sinhl(x).
41 42 * 2.
42 43 *
43 44 * expm1l(x) + expm1l(x)/(expm1l(x)+1)
44 45 * 0 <= x <= lnovft : sinhl(x) := --------------------------------
45 46 * 2
46 47 *
47 48 * lnovft <= x < INF : sinhl(x) := expl(x-MEP1*ln2)*2**ME
48 49 *
49 50 * here
50 51 * lnovft: logrithm of the overflow threshold
↓ open down ↓ |
16 lines elided |
↑ open up ↑ |
51 52 * = MEP1*ln2 chopped to machine precision.
52 53 * ME maximum exponent
53 54 * MEP1 maximum exponent plus 1
54 55 *
55 56 * Special cases:
56 57 * sinhl(x) is x if x is +INF, -INF, or NaN.
57 58 * only sinhl(0)=0 is exact for finite argument.
58 59 *
59 60 */
60 61
61 -#define ME 16383
62 -#define MEP1 16384
63 -#define LNOVFT 1.135652340629414394949193107797076342845e+4L
64 - /* last 32 bits of LN2HI is zero */
65 -#define LN2HI 6.931471805599453094172319547495844850203e-0001L
66 -#define LN2LO 1.667085920830552208890449330400379754169e-0025L
67 -
68 -static const long double
69 - half = 0.5L,
70 - one = 1.0L,
71 - ln2hi = LN2HI,
72 - ln2lo = LN2LO,
73 - lnovftL = LNOVFT;
62 +#define ME 16383
63 +#define MEP1 16384
64 +#define LNOVFT 1.135652340629414394949193107797076342845e+4L
65 +/* last 32 bits of LN2HI is zero */
66 +#define LN2HI 6.931471805599453094172319547495844850203e-0001L
67 +#define LN2LO 1.667085920830552208890449330400379754169e-0025L
68 +
69 +static const long double half = 0.5L,
70 + one = 1.0L,
71 + ln2hi = LN2HI,
72 + ln2lo = LN2LO,
73 + lnovftL = LNOVFT;
74 74
75 75 long double
76 -sinhl(long double x) {
76 +sinhl(long double x)
77 +{
77 78 long double r, t;
78 79
79 80 if (!finitel(x))
80 - return (x + x); /* sinh of NaN or +-INF is itself */
81 + return (x + x); /* sinh of NaN or +-INF is itself */
82 +
81 83 r = fabsl(x);
84 +
82 85 if (r < lnovftL) {
83 86 t = expm1l(r);
84 87 r = copysignl((t + t / (one + t)) * half, x);
85 88 } else {
86 89 r = copysignl(expl((r - MEP1 * ln2hi) - MEP1 * ln2lo), x);
87 90 r = scalbnl(r, ME);
88 91 }
92 +
89 93 return (r);
90 94 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX