Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/Q/logl.c
+++ new/usr/src/lib/libm/common/Q/logl.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 31 #pragma weak __logl = logl
31 32
32 33 /*
33 34 * logl(x)
34 35 * Table look-up algorithm
35 36 * By K.C. Ng, March 6, 1989
36 37 *
37 38 * (a). For x in [31/33,33/31], using a special approximation:
38 39 * f = x - 1;
39 40 * s = f/(2.0+f); ... here |s| <= 0.03125
40 41 * z = s*s;
41 42 * return f-s*(f-z*(B1+z*(B2+z*(B3+z*(B4+...+z*B9)...))));
42 43 *
43 44 * (b). Otherwise, normalize x = 2^n * 1.f.
44 45 * Use a 6-bit table look-up: find a 6 bit g that match f to 6.5 bits,
45 46 * then
46 47 * log(x) = n*ln2 + log(1.g) + log(1.f/1.g).
47 48 * Here the leading and trailing values of log(1.g) are obtained from
48 49 * a size-64 table.
49 50 * For log(1.f/1.g), let s = (1.f-1.g)/(1.f+1.g), then
50 51 * log(1.f/1.g) = log((1+s)/(1-s)) = 2s + 2/3 s^3 + 2/5 s^5 +...
51 52 * Note that |s|<2**-8=0.00390625. We use an odd s-polynomial
52 53 * approximation to compute log(1.f/1.g):
53 54 * s*(A1+s^2*(A2+s^2*(A3+s^2*(A4+s^2*(A5+s^2*(A6+s^2*A7))))))
54 55 * (Precision is 2**-136.91 bits, absolute error)
55 56 *
56 57 * (c). The final result is computed by
57 58 * (n*ln2_hi+_TBL_logl_hi[j]) +
58 59 * ( (n*ln2_lo+_TBL_logl_lo[j]) + s*(A1+...) )
59 60 *
60 61 * Note.
61 62 * For ln2_hi and _TBL_logl_hi[j], we force their last 32 bit to be zero
62 63 * so that n*ln2_hi + _TBL_logl_hi[j] is exact. Here
63 64 * _TBL_logl_hi[j] + _TBL_logl_lo[j] match log(1+j*2**-6) to 194 bits
64 65 *
65 66 *
66 67 * Special cases:
67 68 * log(x) is NaN with signal if x < 0 (including -INF) ;
68 69 * log(+INF) is +INF; log(0) is -INF with signal;
69 70 * log(NaN) is that NaN with no signal.
70 71 *
↓ open down ↓ |
36 lines elided |
↑ open up ↑ |
71 72 * Constants:
72 73 * The hexadecimal values are the intended ones for the following constants.
73 74 * The decimal values may be used, provided that the compiler will convert
74 75 * from decimal to binary accurately enough to produce the hexadecimal values
75 76 * shown.
76 77 */
77 78
78 79 #include "libm.h"
79 80
80 81 extern const long double _TBL_logl_hi[], _TBL_logl_lo[];
81 -
82 -static const long double
83 - zero = 0.0L,
84 - one = 1.0L,
85 - two = 2.0L,
86 - two113 = 10384593717069655257060992658440192.0L,
87 - ln2hi = 6.931471805599453094172319547495844850203e-0001L,
88 - ln2lo = 1.667085920830552208890449330400379754169e-0025L,
89 - A1 = 2.000000000000000000000000000000000000024e+0000L,
90 - A2 = 6.666666666666666666666666666666091393804e-0001L,
91 - A3 = 4.000000000000000000000000407167070220671e-0001L,
92 - A4 = 2.857142857142857142730077490612903681164e-0001L,
93 - A5 = 2.222222222222242577702836920812882605099e-0001L,
94 - A6 = 1.818181816435493395985912667105885828356e-0001L,
95 - A7 = 1.538537835211839751112067512805496931725e-0001L,
96 - B1 = 6.666666666666666666666666666666961498329e-0001L,
97 - B2 = 3.999999999999999999999999990037655042358e-0001L,
98 - B3 = 2.857142857142857142857273426428347457918e-0001L,
99 - B4 = 2.222222222222222221353229049747910109566e-0001L,
100 - B5 = 1.818181818181821503532559306309070138046e-0001L,
101 - B6 = 1.538461538453809210486356084587356788556e-0001L,
102 - B7 = 1.333333344463358756121456892645178795480e-0001L,
103 - B8 = 1.176460904783899064854645174603360383792e-0001L,
104 - B9 = 1.057293869956598995326368602518056990746e-0001L;
82 +static const long double zero = 0.0L,
83 + one = 1.0L,
84 + two = 2.0L,
85 + two113 = 10384593717069655257060992658440192.0L,
86 + ln2hi = 6.931471805599453094172319547495844850203e-0001L,
87 + ln2lo = 1.667085920830552208890449330400379754169e-0025L,
88 + A1 = 2.000000000000000000000000000000000000024e+0000L,
89 + A2 = 6.666666666666666666666666666666091393804e-0001L,
90 + A3 = 4.000000000000000000000000407167070220671e-0001L,
91 + A4 = 2.857142857142857142730077490612903681164e-0001L,
92 + A5 = 2.222222222222242577702836920812882605099e-0001L,
93 + A6 = 1.818181816435493395985912667105885828356e-0001L,
94 + A7 = 1.538537835211839751112067512805496931725e-0001L,
95 + B1 = 6.666666666666666666666666666666961498329e-0001L,
96 + B2 = 3.999999999999999999999999990037655042358e-0001L,
97 + B3 = 2.857142857142857142857273426428347457918e-0001L,
98 + B4 = 2.222222222222222221353229049747910109566e-0001L,
99 + B5 = 1.818181818181821503532559306309070138046e-0001L,
100 + B6 = 1.538461538453809210486356084587356788556e-0001L,
101 + B7 = 1.333333344463358756121456892645178795480e-0001L,
102 + B8 = 1.176460904783899064854645174603360383792e-0001L,
103 + B9 = 1.057293869956598995326368602518056990746e-0001L;
105 104
106 105 long double
107 -logl(long double x) {
106 +logl(long double x)
107 +{
108 108 long double f, s, z, qn, h, t;
109 - int *px = (int *) &x;
110 - int *pz = (int *) &z;
109 + int *px = (int *)&x;
110 + int *pz = (int *)&z;
111 111 int i, j, ix, i0, i1, n;
112 112
113 113 /* get long double precision word ordering */
114 - if (*(int *) &one == 0) {
114 + if (*(int *)&one == 0) {
115 115 i0 = 3;
116 116 i1 = 0;
117 117 } else {
118 118 i0 = 0;
119 119 i1 = 3;
120 120 }
121 121
122 122 n = 0;
123 123 ix = px[i0];
124 - if (ix > 0x3ffee0f8) { /* if x > 31/33 */
124 +
125 + if (ix > 0x3ffee0f8) { /* if x > 31/33 */
125 126 if (ix < 0x3fff1084) { /* if x < 33/31 */
126 127 f = x - one;
127 128 z = f * f;
128 - if (((ix - 0x3fff0000) | px[i1] | px[2] | px[1]) == 0) {
129 +
130 + if (((ix - 0x3fff0000) | px[i1] | px[2] | px[1]) == 0)
129 131 return (zero); /* log(1)= +0 */
130 - }
132 +
131 133 s = f / (two + f); /* |s|<2**-8 */
132 134 z = s * s;
133 - return (f - s * (f - z * (B1 + z * (B2 + z * (B3 +
134 - z * (B4 + z * (B5 + z * (B6 + z * (B7 +
135 - z * (B8 + z * B9))))))))));
135 + return (f - s * (f - z * (B1 + z * (B2 + z * (B3 + z *
136 + (B4 + z * (B5 + z * (B6 + z * (B7 + z * (B8 + z *
137 + B9))))))))));
136 138 }
139 +
137 140 if (ix >= 0x7fff0000)
138 - return (x + x); /* x is +inf or NaN */
141 + return (x + x); /* x is +inf or NaN */
142 +
139 143 goto LARGE_N;
140 144 }
145 +
141 146 if (ix >= 0x00010000)
142 147 goto LARGE_N;
148 +
143 149 i = ix & 0x7fffffff;
150 +
144 151 if ((i | px[i1] | px[2] | px[1]) == 0) {
145 152 px[i0] |= 0x80000000;
146 153 return (one / x); /* log(0.0) = -inf */
147 154 }
155 +
148 156 if (ix < 0) {
149 - if ((unsigned) ix >= 0xffff0000)
150 - return (x - x); /* x is -inf or NaN */
151 - return (zero / zero); /* log(x<0) is NaN */
157 + if ((unsigned)ix >= 0xffff0000)
158 + return (x - x); /* x is -inf or NaN */
159 +
160 + return (zero / zero); /* log(x<0) is NaN */
152 161 }
162 +
153 163 /* subnormal x */
154 164 x *= two113;
155 165 n = -113;
156 166 ix = px[i0];
157 167 LARGE_N:
158 168 n += ((ix + 0x200) >> 16) - 0x3fff;
159 169 ix = (ix & 0x0000ffff) | 0x3fff0000; /* scale x to [1,2] */
160 170 px[i0] = ix;
161 171 i = ix + 0x200;
162 172 pz[i0] = i & 0xfffffc00;
163 173 pz[i1] = pz[1] = pz[2] = 0;
164 174 s = (x - z) / (x + z);
165 175 j = (i >> 10) & 0x3f;
166 176 z = s * s;
167 - qn = (long double) n;
177 + qn = (long double)n;
168 178 t = qn * ln2lo + _TBL_logl_lo[j];
169 179 h = qn * ln2hi + _TBL_logl_hi[j];
170 - f = t + s * (A1 + z * (A2 + z * (A3 + z * (A4 + z * (A5 +
171 - z * (A6 + z * A7))))));
180 + f = t + s * (A1 + z * (A2 + z * (A3 + z * (A4 + z * (A5 + z * (A6 + z *
181 + A7))))));
172 182 return (h + f);
173 183 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX