1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24  */
  25 
  26 /*
  27  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  28  * Use is subject to license terms.
  29  */
  30 
  31 #pragma weak __logl = logl
  32 
  33 /*
  34  * logl(x)
  35  * Table look-up algorithm
  36  * By K.C. Ng, March 6, 1989
  37  *
  38  * (a). For x in [31/33,33/31], using a special approximation:
  39  *      f = x - 1;
  40  *      s = f/(2.0+f);  ... here |s| <= 0.03125
  41  *      z = s*s;
  42  *      return f-s*(f-z*(B1+z*(B2+z*(B3+z*(B4+...+z*B9)...))));
  43  *
  44  * (b). Otherwise, normalize x = 2^n * 1.f.
  45  *      Use a 6-bit table look-up: find a 6 bit g that match f to 6.5 bits,
  46  *      then
  47  *          log(x) = n*ln2 + log(1.g) + log(1.f/1.g).
  48  *      Here the leading and trailing values of log(1.g) are obtained from
  49  *      a size-64 table.
  50  *      For log(1.f/1.g), let s = (1.f-1.g)/(1.f+1.g), then
  51  *          log(1.f/1.g) = log((1+s)/(1-s)) = 2s + 2/3 s^3 + 2/5 s^5 +...
  52  *      Note that |s|<2**-8=0.00390625. We use an odd s-polynomial
  53  *      approximation to compute log(1.f/1.g):
  54  *              s*(A1+s^2*(A2+s^2*(A3+s^2*(A4+s^2*(A5+s^2*(A6+s^2*A7))))))
  55  *      (Precision is 2**-136.91 bits, absolute error)
  56  *
  57  * (c). The final result is computed by
  58  *              (n*ln2_hi+_TBL_logl_hi[j]) +
  59  *                      ( (n*ln2_lo+_TBL_logl_lo[j]) + s*(A1+...) )
  60  *
  61  * Note.
  62  *      For ln2_hi and _TBL_logl_hi[j], we force their last 32 bit to be zero
  63  *      so that n*ln2_hi + _TBL_logl_hi[j] is exact. Here
  64  *      _TBL_logl_hi[j] + _TBL_logl_lo[j] match log(1+j*2**-6) to 194 bits
  65  *
  66  *
  67  * Special cases:
  68  *      log(x) is NaN with signal if x < 0 (including -INF) ;
  69  *      log(+INF) is +INF; log(0) is -INF with signal;
  70  *      log(NaN) is that NaN with no signal.
  71  *
  72  * Constants:
  73  * The hexadecimal values are the intended ones for the following constants.
  74  * The decimal values may be used, provided that the compiler will convert
  75  * from decimal to binary accurately enough to produce the hexadecimal values
  76  * shown.
  77  */
  78 
  79 #include "libm.h"
  80 
  81 extern const long double _TBL_logl_hi[], _TBL_logl_lo[];
  82 static const long double zero = 0.0L,
  83         one = 1.0L,
  84         two = 2.0L,
  85         two113 = 10384593717069655257060992658440192.0L,
  86         ln2hi = 6.931471805599453094172319547495844850203e-0001L,
  87         ln2lo = 1.667085920830552208890449330400379754169e-0025L,
  88         A1 = 2.000000000000000000000000000000000000024e+0000L,
  89         A2 = 6.666666666666666666666666666666091393804e-0001L,
  90         A3 = 4.000000000000000000000000407167070220671e-0001L,
  91         A4 = 2.857142857142857142730077490612903681164e-0001L,
  92         A5 = 2.222222222222242577702836920812882605099e-0001L,
  93         A6 = 1.818181816435493395985912667105885828356e-0001L,
  94         A7 = 1.538537835211839751112067512805496931725e-0001L,
  95         B1 = 6.666666666666666666666666666666961498329e-0001L,
  96         B2 = 3.999999999999999999999999990037655042358e-0001L,
  97         B3 = 2.857142857142857142857273426428347457918e-0001L,
  98         B4 = 2.222222222222222221353229049747910109566e-0001L,
  99         B5 = 1.818181818181821503532559306309070138046e-0001L,
 100         B6 = 1.538461538453809210486356084587356788556e-0001L,
 101         B7 = 1.333333344463358756121456892645178795480e-0001L,
 102         B8 = 1.176460904783899064854645174603360383792e-0001L,
 103         B9 = 1.057293869956598995326368602518056990746e-0001L;
 104 
 105 long double
 106 logl(long double x)
 107 {
 108         long double f, s, z, qn, h, t;
 109         int *px = (int *)&x;
 110         int *pz = (int *)&z;
 111         int i, j, ix, i0, i1, n;
 112 
 113         /* get long double precision word ordering */
 114         if (*(int *)&one == 0) {
 115                 i0 = 3;
 116                 i1 = 0;
 117         } else {
 118                 i0 = 0;
 119                 i1 = 3;
 120         }
 121 
 122         n = 0;
 123         ix = px[i0];
 124 
 125         if (ix > 0x3ffee0f8) {               /* if x >  31/33 */
 126                 if (ix < 0x3fff1084) {       /* if x < 33/31 */
 127                         f = x - one;
 128                         z = f * f;
 129 
 130                         if (((ix - 0x3fff0000) | px[i1] | px[2] | px[1]) == 0)
 131                                 return (zero);  /* log(1)= +0 */
 132 
 133                         s = f / (two + f);      /* |s|<2**-8 */
 134                         z = s * s;
 135                         return (f - s * (f - z * (B1 + z * (B2 + z * (B3 + z *
 136                             (B4 + z * (B5 + z * (B6 + z * (B7 + z * (B8 + z *
 137                             B9))))))))));
 138                 }
 139 
 140                 if (ix >= 0x7fff0000)
 141                         return (x + x);         /* x is +inf or NaN */
 142 
 143                 goto LARGE_N;
 144         }
 145 
 146         if (ix >= 0x00010000)
 147                 goto LARGE_N;
 148 
 149         i = ix & 0x7fffffff;
 150 
 151         if ((i | px[i1] | px[2] | px[1]) == 0) {
 152                 px[i0] |= 0x80000000;
 153                 return (one / x);       /* log(0.0) = -inf */
 154         }
 155 
 156         if (ix < 0) {
 157                 if ((unsigned)ix >= 0xffff0000)
 158                         return (x - x);         /* x is -inf or NaN */
 159 
 160                 return (zero / zero);           /* log(x<0) is NaN  */
 161         }
 162 
 163         /* subnormal x */
 164         x *= two113;
 165         n = -113;
 166         ix = px[i0];
 167 LARGE_N:
 168         n += ((ix + 0x200) >> 16) - 0x3fff;
 169         ix = (ix & 0x0000ffff) | 0x3fff0000;        /* scale x to [1,2] */
 170         px[i0] = ix;
 171         i = ix + 0x200;
 172         pz[i0] = i & 0xfffffc00;
 173         pz[i1] = pz[1] = pz[2] = 0;
 174         s = (x - z) / (x + z);
 175         j = (i >> 10) & 0x3f;
 176         z = s * s;
 177         qn = (long double)n;
 178         t = qn * ln2lo + _TBL_logl_lo[j];
 179         h = qn * ln2hi + _TBL_logl_hi[j];
 180         f = t + s * (A1 + z * (A2 + z * (A3 + z * (A4 + z * (A5 + z * (A6 + z *
 181             A7))))));
 182         return (h + f);
 183 }