1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __jnl = jnl 32 #pragma weak __ynl = ynl 33 34 /* 35 * floating point Bessel's function of the 1st and 2nd kind 36 * of order n: jn(n,x),yn(n,x); 37 * 38 * Special cases: 39 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; 40 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. 41 * Note 2. About jn(n,x), yn(n,x) 42 * For n=0, j0(x) is called, 43 * for n=1, j1(x) is called, 44 * for n<x, forward recursion us used starting 45 * from values of j0(x) and j1(x). 46 * for n>x, a continued fraction approximation to 47 * j(n,x)/j(n-1,x) is evaluated and then backward 48 * recursion is used starting from a supposed value 49 * for j(n,x). The resulting value of j(0,x) is 50 * compared with the actual value to correct the 51 * supposed value of j(n,x). 52 * 53 * yn(n,x) is similar in all respects, except 54 * that forward recursion is used for all 55 * values of n>1. 56 * 57 */ 58 59 #include "libm.h" 60 #include "longdouble.h" 61 #include <float.h> /* LDBL_MAX */ 62 63 #define GENERIC long double 64 65 static const GENERIC 66 invsqrtpi = 5.641895835477562869480794515607725858441e-0001L, 67 two = 2.0L, 68 zero = 0.0L, 69 one = 1.0L; 70 71 GENERIC 72 jnl(int n, GENERIC x) 73 { 74 int i, sgn; 75 GENERIC a, b, temp, z, w; 76 77 /* 78 * J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) 79 * Thus, J(-n,x) = J(n,-x) 80 */ 81 if (n < 0) { 82 n = -n; 83 x = -x; 84 } 85 86 if (n == 0) 87 return (j0l(x)); 88 89 if (n == 1) 90 return (j1l(x)); 91 92 if (x != x) 93 return (x + x); 94 95 if ((n & 1) == 0) 96 sgn = 0; /* even n */ 97 else 98 sgn = signbitl(x); /* old n */ 99 100 x = fabsl(x); 101 102 if (x == zero || !finitel(x)) { 103 b = zero; 104 } else if ((GENERIC)n <= x) { 105 /* 106 * Safe to use 107 * J(n+1,x)=2n/x *J(n,x)-J(n-1,x) 108 */ 109 if (x > 1.0e91L) { 110 /* 111 * x >> n**2 112 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) 113 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) 114 * Let s=sin(x), c=cos(x), 115 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then 116 * 117 * n sin(xn)*sqt2 cos(xn)*sqt2 118 * ---------------------------------- 119 * 0 s-c c+s 120 * 1 -s-c -c+s 121 * 2 -s+c -c-s 122 * 3 s+c c-s 123 */ 124 switch (n & 3) { 125 case 0: 126 temp = cosl(x) + sinl(x); 127 break; 128 case 1: 129 temp = -cosl(x) + sinl(x); 130 break; 131 case 2: 132 temp = -cosl(x) - sinl(x); 133 break; 134 case 3: 135 temp = cosl(x) - sinl(x); 136 break; 137 } 138 139 b = invsqrtpi * temp / sqrtl(x); 140 } else { 141 a = j0l(x); 142 b = j1l(x); 143 144 for (i = 1; i < n; i++) { 145 temp = b; 146 /* avoid underflow */ 147 b = b * ((GENERIC)(i + i) / x) - a; 148 a = temp; 149 } 150 } 151 } else { 152 if (x < 1e-17L) { /* use J(n,x) = 1/n!*(x/2)^n */ 153 b = powl(0.5L * x, (GENERIC)n); 154 155 if (b != zero) { 156 for (a = one, i = 1; i <= n; i++) 157 a *= (GENERIC)i; 158 159 b = b / a; 160 } 161 } else { 162 /* use backward recurrence */ 163 /* BEGIN CSTYLED */ 164 /* 165 * x x^2 x^2 166 * J(n,x)/J(n-1,x) = ---- ------ ------ ..... 167 * 2n - 2(n+1) - 2(n+2) 168 * 169 * 1 1 1 170 * (for large x) = ---- ------ ------ ..... 171 * 2n 2(n+1) 2(n+2) 172 * -- - ------ - ------ - 173 * x x x 174 * 175 * Let w = 2n/x and h=2/x, then the above quotient 176 * is equal to the continued fraction: 177 * 1 178 * = ----------------------- 179 * 1 180 * w - ----------------- 181 * 1 182 * w+h - --------- 183 * w+2h - ... 184 * 185 * To determine how many terms needed, let 186 * Q(0) = w, Q(1) = w(w+h) - 1, 187 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), 188 * When Q(k) > 1e4 good for single 189 * When Q(k) > 1e9 good for double 190 * When Q(k) > 1e17 good for quaduple 191 */ 192 /* END CSTYLED */ 193 /* determine k */ 194 GENERIC t, v; 195 double q0, q1, h, tmp; 196 int k, m; 197 198 w = (n + n) / (double)x; 199 h = 2.0 / (double)x; 200 q0 = w; 201 z = w + h; 202 q1 = w * z - 1.0; 203 k = 1; 204 205 while (q1 < 1.0e17) { 206 k += 1; 207 z += h; 208 tmp = z * q1 - q0; 209 q0 = q1; 210 q1 = tmp; 211 } 212 213 m = n + n; 214 215 for (t = zero, i = 2 * (n + k); i >= m; i -= 2) 216 t = one / (i / x - t); 217 218 a = t; 219 b = one; 220 221 /* 222 * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) 223 * hence, if n*(log(2n/x)) > ... 224 * single: 225 * 8.8722839355e+01 226 * double: 227 * 7.09782712893383973096e+02 228 * long double: 229 * 1.1356523406294143949491931077970765006170e+04 230 * then recurrent value may overflow and the result is 231 * likely underflow to zero 232 */ 233 tmp = n; 234 v = two / x; 235 tmp = tmp * logl(fabsl(v * tmp)); 236 237 if (tmp < 1.1356523406294143949491931077970765e+04L) { 238 for (i = n - 1; i > 0; i--) { 239 temp = b; 240 b = ((i + i) / x) * b - a; 241 a = temp; 242 } 243 } else { 244 for (i = n - 1; i > 0; i--) { 245 temp = b; 246 b = ((i + i) / x) * b - a; 247 a = temp; 248 249 if (b > 1e1000L) { 250 a /= b; 251 t /= b; 252 b = 1.0; 253 } 254 } 255 } 256 257 b = (t * j0l(x) / b); 258 } 259 } 260 261 if (sgn != 0) 262 return (-b); 263 else 264 return (b); 265 } 266 267 GENERIC 268 ynl(int n, GENERIC x) 269 { 270 int i; 271 int sign; 272 GENERIC a, b, temp; 273 274 if (x != x) 275 return (x + x); 276 277 if (x <= zero) { 278 if (x == zero) 279 return (-one / zero); 280 else 281 return (zero / zero); 282 } 283 284 sign = 1; 285 286 if (n < 0) { 287 n = -n; 288 289 if ((n & 1) == 1) 290 sign = -1; 291 } 292 293 if (n == 0) 294 return (y0l(x)); 295 296 if (n == 1) 297 return (sign * y1l(x)); 298 299 if (!finitel(x)) 300 return (zero); 301 302 if (x > 1.0e91L) { 303 /* 304 * x >> n**2 305 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) 306 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) 307 * Let s = sin(x), c = cos(x), 308 * xn = x-(2n+1)*pi/4, sqt2 = sqrt(2), then 309 * 310 * n sin(xn)*sqt2 cos(xn)*sqt2 311 * ---------------------------------- 312 * 0 s-c c+s 313 * 1 -s-c -c+s 314 * 2 -s+c -c-s 315 * 3 s+c c-s 316 */ 317 switch (n & 3) { 318 case 0: 319 temp = sinl(x) - cosl(x); 320 break; 321 case 1: 322 temp = -sinl(x) - cosl(x); 323 break; 324 case 2: 325 temp = -sinl(x) + cosl(x); 326 break; 327 case 3: 328 temp = sinl(x) + cosl(x); 329 break; 330 } 331 332 b = invsqrtpi * temp / sqrtl(x); 333 } else { 334 a = y0l(x); 335 b = y1l(x); 336 337 /* 338 * fix 1262058 and take care of non-default rounding 339 */ 340 for (i = 1; i < n; i++) { 341 temp = b; 342 b *= (GENERIC)(i + i) / x; 343 344 if (b <= -LDBL_MAX) 345 break; 346 347 b -= a; 348 a = temp; 349 } 350 } 351 352 if (sign > 0) 353 return (b); 354 else 355 return (-b); 356 }