1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __hypotl = hypotl 32 33 /* 34 * long double hypotl(long double x, long double y); 35 * Method : 36 * If z=x*x+y*y has error less than sqrt(2)/2 ulp than sqrt(z) has 37 * error less than 1 ulp. 38 * So, compute sqrt(x*x+y*y) with some care as follows: 39 * Assume x>y>0; 40 * 1. save and set rounding to round-to-nearest 41 * 2. if x > 2y use 42 * x1*x1+(y*y+(x2*(x+x2))) for x*x+y*y 43 * where x1 = x with lower 64 bits cleared, x2 = x-x1; else 44 * 3. if x <= 2y use 45 * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) 46 * where t1 = 2x with lower 64 bits cleared, t2 = 2x-t1, y1= y with 47 * lower 64 bits chopped, y2 = y-y1. 48 * 49 * NOTE: DO NOT remove parenthsis! 50 * 51 * Special cases: 52 * hypot(x,y) is INF if x or y is +INF or -INF; else 53 * hypot(x,y) is NAN if x or y is NAN. 54 * 55 * Accuracy: 56 * hypot(x,y) returns sqrt(x^2+y^2) with error less than 1 ulps (units 57 * in the last place) 58 */ 59 60 #include "libm.h" 61 #include "longdouble.h" 62 63 extern enum fp_direction_type __swapRD(enum fp_direction_type); 64 65 static const long double zero = 0.0L, one = 1.0L; 66 long double 67 hypotl(long double x, long double y) 68 { 69 int n0, n1, n2, n3; 70 long double t1, t2, y1, y2, w; 71 int *px = (int *)&x, *py = (int *)&y; 72 int *pt1 = (int *)&t1, *py1 = (int *)&y1; 73 enum fp_direction_type rd; 74 int j, k, nx, ny, nz; 75 76 if ((*(int *)&one) != 0) { /* determine word ordering */ 77 n0 = 0; 78 n1 = 1; 79 n2 = 2; 80 n3 = 3; 81 } else { 82 n0 = 3; 83 n1 = 2; 84 n2 = 1; 85 n3 = 0; 86 } 87 88 px[n0] &= 0x7fffffff; /* clear sign bit of x and y */ 89 py[n0] &= 0x7fffffff; 90 k = 0x7fff0000; 91 nx = px[n0] & k; /* exponent of x and y */ 92 ny = py[n0] & k; 93 94 if (ny > nx) { 95 w = x; 96 x = y; 97 y = w; 98 nz = ny; 99 ny = nx; 100 nx = nz; 101 } /* force x > y */ 102 103 if ((nx - ny) >= 0x00730000) 104 return (x + y); /* x/y >= 2**116 */ 105 106 if (nx < 0x5ff30000 && ny > 0x205b0000) { /* medium x,y */ 107 /* save and set RD to Rounding to nearest */ 108 rd = __swapRD(fp_nearest); 109 w = x - y; 110 111 if (w > y) { 112 pt1[n0] = px[n0]; 113 pt1[n1] = px[n1]; 114 pt1[n2] = pt1[n3] = 0; 115 t2 = x - t1; 116 x = sqrtl(t1 * t1 - (y * (-y) - t2 * (x + t1))); 117 } else { 118 x = x + x; 119 py1[n0] = py[n0]; 120 py1[n1] = py[n1]; 121 py1[n2] = py1[n3] = 0; 122 y2 = y - y1; 123 pt1[n0] = px[n0]; 124 pt1[n1] = px[n1]; 125 pt1[n2] = pt1[n3] = 0; 126 t2 = x - t1; 127 x = sqrtl(t1 * y1 - (w * (-w) - (t2 * y1 + y2 * x))); 128 } 129 130 if (rd != fp_nearest) 131 (void) __swapRD(rd); /* restore rounding mode */ 132 133 return (x); 134 } else { 135 if (nx == k || ny == k) { /* x or y is INF or NaN */ 136 if (isinfl(x)) 137 t2 = x; 138 else if (isinfl(y)) 139 t2 = y; 140 else 141 t2 = x + y; /* invalid if x or y is sNaN */ 142 143 return (t2); 144 } 145 146 if (ny == 0) { 147 if (y == zero || x == zero) 148 return (x + y); 149 150 t1 = scalbnl(one, 16381); 151 x *= t1; 152 y *= t1; 153 return (scalbnl(one, -16381) * hypotl(x, y)); 154 } 155 156 j = nx - 0x3fff0000; 157 px[n0] -= j; 158 py[n0] -= j; 159 pt1[n0] = nx; 160 pt1[n1] = pt1[n2] = pt1[n3] = 0; 161 return (t1 * hypotl(x, y)); 162 } 163 }