1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 /* 32 * expl(x) 33 * Table driven method 34 * Written by K.C. Ng, November 1988. 35 * Algorithm : 36 * 1. Argument Reduction: given the input x, find r and integer k 37 * and j such that 38 * x = (32k+j)*ln2 + r, |r| <= (1/64)*ln2 . 39 * 40 * 2. expl(x) = 2^k * (2^(j/32) + 2^(j/32)*expm1(r)) 41 * Note: 42 * a. expm1(r) = (2r)/(2-R), R = r - r^2*(t1 + t2*r^2) 43 * b. 2^(j/32) is represented as 44 * _TBL_expl_hi[j]+_TBL_expl_lo[j] 45 * where 46 * _TBL_expl_hi[j] = 2^(j/32) rounded 47 * _TBL_expl_lo[j] = 2^(j/32) - _TBL_expl_hi[j]. 48 * 49 * Special cases: 50 * expl(INF) is INF, expl(NaN) is NaN; 51 * expl(-INF)= 0; 52 * for finite argument, only expl(0)=1 is exact. 53 * 54 * Accuracy: 55 * according to an error analysis, the error is always less than 56 * an ulp (unit in the last place). 57 * 58 * Misc. info. 59 * For 113 bit long double 60 * if x > 1.135652340629414394949193107797076342845e+4 61 * then expl(x) overflow; 62 * if x < -1.143346274333629787883724384345262150341e+4 63 * then expl(x) underflow 64 * 65 * Constants: 66 * Only decimal values are given. We assume that the compiler will convert 67 * from decimal to binary accurately enough to produce the correct 68 * hexadecimal values. 69 */ 70 71 #pragma weak __expl = expl 72 73 #include "libm.h" 74 75 extern const long double _TBL_expl_hi[], _TBL_expl_lo[]; 76 static const long double one = 1.0L, 77 two = 2.0L, 78 ln2_64 = 1.083042469624914545964425189778400898568e-2L, 79 ovflthreshold = 1.135652340629414394949193107797076342845e+4L, 80 unflthreshold = -1.143346274333629787883724384345262150341e+4L, 81 invln2_32 = 4.616624130844682903551758979206054839765e+1L, 82 ln2_32hi = 2.166084939249829091928849858592451515688e-2L, 83 ln2_32lo = 5.209643502595475652782654157501186731779e-27L; 84 85 /* rational approximation coeffs for [-(ln2)/64,(ln2)/64] */ 86 static const long double t1 = 1.666666666666666666666666666660876387437e-1L, 87 t2 = -2.777777777777777777777707812093173478756e-3L, 88 t3 = 6.613756613756613482074280932874221202424e-5L, 89 t4 = -1.653439153392139954169609822742235851120e-6L, 90 t5 = 4.175314851769539751387852116610973796053e-8L; 91 92 long double 93 expl(long double x) 94 { 95 int *px = (int *)&x, ix, j, k, m; 96 long double t, r; 97 98 ix = px[0]; /* high word of x */ 99 100 if (ix >= 0x7fff0000) 101 return (x + x); /* NaN of +inf */ 102 103 if (((unsigned)ix) >= 0xffff0000) 104 return (-one / x); /* NaN or -inf */ 105 106 if ((ix & 0x7fffffff) < 0x3fc30000) { 107 if ((int)x < 1) 108 return (one + x); /* |x|<2^-60 */ 109 } 110 111 if (ix > 0) { 112 if (x > ovflthreshold) 113 return (scalbnl(x, 20000)); 114 115 k = (int)(invln2_32 * (x + ln2_64)); 116 } else { 117 if (x < unflthreshold) 118 return (scalbnl(-x, -40000)); 119 120 k = (int)(invln2_32 * (x - ln2_64)); 121 } 122 123 j = k & 0x1f; 124 m = k >> 5; 125 t = (long double)k; 126 x = (x - t * ln2_32hi) - t * ln2_32lo; 127 t = x * x; 128 r = (x - t * (t1 + t * (t2 + t * (t3 + t * (t4 + t * t5))))) - two; 129 x = _TBL_expl_hi[j] - ((_TBL_expl_hi[j] * (x + x)) / r - 130 _TBL_expl_lo[j]); 131 return (scalbnl(x, m)); 132 }