Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/Q/__tanl.c
+++ new/usr/src/lib/libm/common/Q/__tanl.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 31 /*
31 32 * long double __k_tanl(long double x; long double y, int k);
32 33 * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164
33 34 * Input x is assumed to be bounded by ~pi/4 in magnitude.
34 35 * Input y is the tail of x.
35 36 * Input k indicate -- tan if k=0; else -1/tan
36 37 *
37 38 * Table look up algorithm
38 39 * 1. by tan(-x) = -tan(x), need only to consider positive x
↓ open down ↓ |
4 lines elided |
↑ open up ↑ |
39 40 * 2. if x < 5/32 = [0x3ffc4000, 0] = 0.15625 , then
40 41 * if x < 2^-57 (hx < 0x3fc40000 0), set w=x with inexact if x != 0
41 42 * else
42 43 * z = x*x;
43 44 * w = x + (y+(x*z)*(t1+z*(t2+z*(t3+z*(t4+z*(t5+z*t6))))))
44 45 * return (k == 0)? w: 1/w;
45 46 * 3. else
46 47 * ht = (hx + 0x400)&0x7ffff800 (round x to a break point t)
47 48 * lt = 0
48 49 * i = (hy-0x3ffc4000)>>11; (i<=64)
49 - * x' = (x - t)+y (|x'| ~<= 2^-7)
50 + * x' = (x - t)+y (|x'| ~<= 2^-7)
50 51 * By
51 52 * tan(t+x')
52 53 * = (tan(t)+tan(x'))/(1-tan(x')tan(t))
53 54 * We have
54 55 * sin(x')+tan(t)*(tan(t)*sin(x'))
55 56 * = tan(t) + ------------------------------- for k=0
56 57 * cos(x') - tan(t)*sin(x')
57 58 *
58 59 * cos(x') - tan(t)*sin(x')
59 60 * = - -------------------------------------- for k=1
60 61 * tan(t) + tan(t)*(cos(x')-1) + sin(x')
61 62 *
62 63 *
63 - * where tan(t) is from the table,
64 + * where tan(t) is from the table,
64 65 * sin(x') = x + pp1*x^3 + ...+ pp5*x^11
65 66 * cos(x') = 1 + qq1*x^2 + ...+ qq5*x^10
66 67 */
67 68
68 69 #include "libm.h"
69 70
70 71 extern const long double _TBL_tanl_hi[], _TBL_tanl_lo[];
71 -static const long double
72 - one = 1.0L,
72 +static const long double one = 1.0L;
73 +
73 74 /*
74 75 * 3 11 -122.32
75 76 * |sin(x) - (x+pp1*x +...+ pp5*x )| <= 2 for |x|<1/64
76 77 */
77 - pp1 = -1.666666666666666666666666666586782940810e-0001L,
78 - pp2 = +8.333333333333333333333003723660929317540e-0003L,
79 - pp3 = -1.984126984126984076045903483778337804470e-0004L,
80 - pp4 = +2.755731922361906641319723106210900949413e-0006L,
81 - pp5 = -2.505198398570947019093998469135012057673e-0008L,
78 +static const long double
79 + pp1 = -1.666666666666666666666666666586782940810e-0001L,
80 + pp2 = +8.333333333333333333333003723660929317540e-0003L,
81 + pp3 = -1.984126984126984076045903483778337804470e-0004L,
82 + pp4 = +2.755731922361906641319723106210900949413e-0006L,
83 + pp5 = -2.505198398570947019093998469135012057673e-0008L;
84 +
82 85 /*
83 86 * 2 10 -123.84
84 87 * |cos(x) - (1+qq1*x +...+ qq5*x )| <= 2 for |x|<=1/128
85 88 */
86 - qq1 = -4.999999999999999999999999999999378373641e-0001L,
87 - qq2 = +4.166666666666666666666665478399327703130e-0002L,
88 - qq3 = -1.388888888888888888058211230618051613494e-0003L,
89 - qq4 = +2.480158730156105377771585658905303111866e-0005L,
90 - qq5 = -2.755728099762526325736488376695157008736e-0007L,
89 +static const long double
90 + qq1 = -4.999999999999999999999999999999378373641e-0001L,
91 + qq2 = +4.166666666666666666666665478399327703130e-0002L,
92 + qq3 = -1.388888888888888888058211230618051613494e-0003L,
93 + qq4 = +2.480158730156105377771585658905303111866e-0005L,
94 + qq5 = -2.755728099762526325736488376695157008736e-0007L;
95 +
91 96 /*
92 97 * |tan(x) - (x+t1*x^3+...+t6*x^13)|
93 98 * |------------------------------ | <= 2^-59.73 for |x|<0.15625
94 99 * | x |
95 100 */
96 - t1 = +3.333333333333333333333333333333423342490e-0001L,
97 - t2 = +1.333333333333333333333333333093838744537e-0001L,
98 - t3 = +5.396825396825396825396827906318682662250e-0002L,
99 - t4 = +2.186948853615520282185576976994418486911e-0002L,
100 - t5 = +8.863235529902196573354554519991152936246e-0003L,
101 - t6 = +3.592128036572480064652191427543994878790e-0003L,
102 - t7 = +1.455834387051455257856833807581901305474e-0003L,
103 - t8 = +5.900274409318599857829983256201725587477e-0004L,
104 - t9 = +2.391291152117265181501116961901122362937e-0004L,
105 - t10 = +9.691533169382729742394024173194981882375e-0005L,
106 - t11 = +3.927994733186415603228178184225780859951e-0005L,
107 - t12 = +1.588300018848323824227640064883334101288e-0005L,
108 - t13 = +6.916271223396808311166202285131722231723e-0006L;
101 +static const long double
102 + t1 = +3.333333333333333333333333333333423342490e-0001L,
103 + t2 = +1.333333333333333333333333333093838744537e-0001L,
104 + t3 = +5.396825396825396825396827906318682662250e-0002L,
105 + t4 = +2.186948853615520282185576976994418486911e-0002L,
106 + t5 = +8.863235529902196573354554519991152936246e-0003L,
107 + t6 = +3.592128036572480064652191427543994878790e-0003L,
108 + t7 = +1.455834387051455257856833807581901305474e-0003L,
109 + t8 = +5.900274409318599857829983256201725587477e-0004L,
110 + t9 = +2.391291152117265181501116961901122362937e-0004L,
111 + t10 = +9.691533169382729742394024173194981882375e-0005L,
112 + t11 = +3.927994733186415603228178184225780859951e-0005L,
113 + t12 = +1.588300018848323824227640064883334101288e-0005L,
114 + t13 = +6.916271223396808311166202285131722231723e-0006L;
109 115
110 116 #define i0 0
111 117
112 118 long double
113 -__k_tanl(long double x, long double y, int k) {
119 +__k_tanl(long double x, long double y, int k)
120 +{
114 121 long double a, t, z, w = 0, s, c;
115 - int *pt = (int *) &t, *px = (int *) &x;
122 + int *pt = (int *)&t, *px = (int *)&x;
116 123 int i, j, hx, ix;
117 124
118 125 t = 1.0L;
119 126 hx = px[i0];
120 127 ix = hx & 0x7fffffff;
128 +
121 129 if (ix < 0x3ffc4000) {
122 - *(3 - i0 + (int *) &t) = 1; /* make t = one+ulp */
130 + *(3 - i0 + (int *)&t) = 1; /* make t = one+ulp */
131 +
123 132 if (ix < 0x3fc60000) {
124 - if (((int) (x * t)) < 1) /* generate inexact */
125 - w = x; /* generate underflow if subnormal */
133 + if (((int)(x * t)) < 1) /* generate inexact */
134 + w = x; /* generate underflow if subnormal */
126 135 } else {
127 136 z = x * x;
128 - if (ix < 0x3ff30000) /* 2**-12 */
137 +
138 + if (ix < 0x3ff30000) { /* 2**-12 */
129 139 t = z * (t1 + z * (t2 + z * (t3 + z * t4)));
130 - else
131 - t = z * (t1 + z * (t2 + z * (t3 + z * (t4 +
132 - z * (t5 + z * (t6 + z * (t7 + z * (t8 +
133 - z * (t9 + z * (t10 + z * (t11 +
134 - z * (t12 + z * t13))))))))))));
140 + } else {
141 + t = z * (t1 + z * (t2 + z * (t3 + z * (t4 + z *
142 + (t5 + z * (t6 + z * (t7 + z * (t8 + z *
143 + (t9 + z * (t10 + z * (t11 + z * (t12 + z *
144 + t13))))))))))));
145 + }
146 +
135 147 t = y + x * t;
136 148 w = x + t;
137 149 }
150 +
138 151 return (k == 0 ? w : -one / w);
139 152 }
153 +
140 154 j = (ix + 0x400) & 0x7ffff800;
141 155 i = (j - 0x3ffc4000) >> 11;
142 156 pt[i0] = j;
157 +
143 158 if (hx > 0)
144 159 x = y - (t - x);
145 160 else
146 161 x = (-y) - (t + x);
162 +
147 163 a = _TBL_tanl_hi[i];
148 164 z = x * x;
149 165 /* cos(x)-1 */
150 166 t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
151 167 /* sin(x) */
152 168 s = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z * pp5)))));
169 +
153 170 if (k == 0) {
154 171 w = a * s;
155 172 t = _TBL_tanl_lo[i] + (s + a * w) / (one - (w - t));
156 173 return (hx < 0 ? -a - t : a + t);
157 174 } else {
158 175 w = s + a * t;
159 176 c = w + _TBL_tanl_lo[i];
160 177 z = one - (a * s - t);
161 178 return (hx >= 0 ? z / (-a - c) : z / (a + c));
162 179 }
163 180 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX