1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24  */
  25 
  26 /*
  27  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  28  * Use is subject to license terms.
  29  */
  30 
  31 /*
  32  * long double __k_tanl(long double x; long double y, int k);
  33  * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164
  34  * Input x is assumed to be bounded by ~pi/4 in magnitude.
  35  * Input y is the tail of x.
  36  * Input k indicate -- tan if k=0; else -1/tan
  37  *
  38  * Table look up algorithm
  39  *      1. by tan(-x) = -tan(x), need only to consider positive x
  40  *      2. if x < 5/32 = [0x3ffc4000, 0] = 0.15625 , then
  41  *           if x < 2^-57 (hx < 0x3fc40000 0), set w=x with inexact if x !=  0
  42  *           else
  43  *              z = x*x;
  44  *              w = x + (y+(x*z)*(t1+z*(t2+z*(t3+z*(t4+z*(t5+z*t6))))))
  45  *         return (k == 0)? w: 1/w;
  46  *      3. else
  47  *              ht = (hx + 0x400)&0x7ffff800        (round x to a break point t)
  48  *              lt = 0
  49  *              i  = (hy-0x3ffc4000)>>11; (i<=64)
  50  *              x' = (x - t)+y                  (|x'| ~<= 2^-7)
  51  *         By
  52  *              tan(t+x')
  53  *                = (tan(t)+tan(x'))/(1-tan(x')tan(t))
  54  *         We have
  55  *                           sin(x')+tan(t)*(tan(t)*sin(x'))
  56  *                = tan(t) + -------------------------------    for k=0
  57  *                              cos(x') - tan(t)*sin(x')
  58  *
  59  *                           cos(x') - tan(t)*sin(x')
  60  *                = - --------------------------------------    for k=1
  61  *                     tan(t) + tan(t)*(cos(x')-1) + sin(x')
  62  *
  63  *
  64  *         where        tan(t) is from the table,
  65  *                      sin(x') = x + pp1*x^3 + ...+ pp5*x^11
  66  *                      cos(x') = 1 + qq1*x^2 + ...+ qq5*x^10
  67  */
  68 
  69 #include "libm.h"
  70 
  71 extern const long double _TBL_tanl_hi[], _TBL_tanl_lo[];
  72 static const long double one = 1.0L;
  73 
  74 /*
  75  *                   3           11       -122.32
  76  * |sin(x) - (x+pp1*x +...+ pp5*x  )| <= 2        for |x|<1/64
  77  */
  78 static const long double
  79         pp1 = -1.666666666666666666666666666586782940810e-0001L,
  80         pp2 = +8.333333333333333333333003723660929317540e-0003L,
  81         pp3 = -1.984126984126984076045903483778337804470e-0004L,
  82         pp4 = +2.755731922361906641319723106210900949413e-0006L,
  83         pp5 = -2.505198398570947019093998469135012057673e-0008L;
  84 
  85 /*
  86  *                   2           10        -123.84
  87  * |cos(x) - (1+qq1*x +...+ qq5*x  )| <= 2        for |x|<=1/128
  88  */
  89 static const long double
  90         qq1 = -4.999999999999999999999999999999378373641e-0001L,
  91         qq2 = +4.166666666666666666666665478399327703130e-0002L,
  92         qq3 = -1.388888888888888888058211230618051613494e-0003L,
  93         qq4 = +2.480158730156105377771585658905303111866e-0005L,
  94         qq5 = -2.755728099762526325736488376695157008736e-0007L;
  95 
  96 /*
  97  * |tan(x) - (x+t1*x^3+...+t6*x^13)|
  98  * |------------------------------ | <= 2^-59.73 for |x|<0.15625
  99  * |                x              |
 100  */
 101 static const long double
 102         t1 = +3.333333333333333333333333333333423342490e-0001L,
 103         t2 = +1.333333333333333333333333333093838744537e-0001L,
 104         t3 = +5.396825396825396825396827906318682662250e-0002L,
 105         t4 = +2.186948853615520282185576976994418486911e-0002L,
 106         t5 = +8.863235529902196573354554519991152936246e-0003L,
 107         t6 = +3.592128036572480064652191427543994878790e-0003L,
 108         t7 = +1.455834387051455257856833807581901305474e-0003L,
 109         t8 = +5.900274409318599857829983256201725587477e-0004L,
 110         t9 = +2.391291152117265181501116961901122362937e-0004L,
 111         t10 = +9.691533169382729742394024173194981882375e-0005L,
 112         t11 = +3.927994733186415603228178184225780859951e-0005L,
 113         t12 = +1.588300018848323824227640064883334101288e-0005L,
 114         t13 = +6.916271223396808311166202285131722231723e-0006L;
 115 
 116 #define i0      0
 117 
 118 long double
 119 __k_tanl(long double x, long double y, int k)
 120 {
 121         long double a, t, z, w = 0, s, c;
 122         int *pt = (int *)&t, *px = (int *)&x;
 123         int i, j, hx, ix;
 124 
 125         t = 1.0L;
 126         hx = px[i0];
 127         ix = hx & 0x7fffffff;
 128 
 129         if (ix < 0x3ffc4000) {
 130                 *(3 - i0 + (int *)&t) = 1;  /* make t = one+ulp */
 131 
 132                 if (ix < 0x3fc60000) {
 133                         if (((int)(x * t)) < 1)      /* generate inexact */
 134                                 w = x; /* generate underflow if subnormal */
 135                 } else {
 136                         z = x * x;
 137 
 138                         if (ix < 0x3ff30000) {       /* 2**-12 */
 139                                 t = z * (t1 + z * (t2 + z * (t3 + z * t4)));
 140                         } else {
 141                                 t = z * (t1 + z * (t2 + z * (t3 + z * (t4 + z *
 142                                     (t5 + z * (t6 + z * (t7 + z * (t8 + z *
 143                                     (t9 + z * (t10 + z * (t11 + z * (t12 + z *
 144                                     t13))))))))))));
 145                         }
 146 
 147                         t = y + x * t;
 148                         w = x + t;
 149                 }
 150 
 151                 return (k == 0 ? w : -one / w);
 152         }
 153 
 154         j = (ix + 0x400) & 0x7ffff800;
 155         i = (j - 0x3ffc4000) >> 11;
 156         pt[i0] = j;
 157 
 158         if (hx > 0)
 159                 x = y - (t - x);
 160         else
 161                 x = (-y) - (t + x);
 162 
 163         a = _TBL_tanl_hi[i];
 164         z = x * x;
 165         /* cos(x)-1 */
 166         t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
 167         /* sin(x) */
 168         s = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z * pp5)))));
 169 
 170         if (k == 0) {
 171                 w = a * s;
 172                 t = _TBL_tanl_lo[i] + (s + a * w) / (one - (w - t));
 173                 return (hx < 0 ? -a - t : a + t);
 174         } else {
 175                 w = s + a * t;
 176                 c = w + _TBL_tanl_lo[i];
 177                 z = one - (a * s - t);
 178                 return (hx >= 0 ? z / (-a - c) : z / (a + c));
 179         }
 180 }