1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 /* 32 * long double __k_sinl(long double x, long double y); 33 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.785398164 34 * Input x is assumed to be bounded by ~pi/4 in magnitude. 35 * Input y is the tail of x. 36 * 37 * Table look up algorithm 38 * 1. by sin(-x) = -sin(x), need only to consider positive x 39 * 2. if x < 25/128 = [0x3ffc9000,0,0,0] = 0.1953125 , then 40 * if x < 2^-57 (hx < 0x3fc60000,0,0,0), return x (inexact if x != 0) 41 * z = x*x; 42 * if x <= 1/64 = 2**-6 43 * sin(x) = x + (y+(x*z)*(p1 + z*p2)) 44 * else 45 * sin(x) = x + (y+(x*z)*(p1 + z*(p2 + z*(p3 + z*p4)))) 46 * 3. else 47 * ht = (hx + 0x400)&0x7ffff800 (round x to a break point t) 48 * lt = 0 49 * i = (hy-0x3ffc4000)>>11; (i<=64) 50 * x' = (x - t)+y (|x'| ~<= 2^-7 51 * By 52 * sin(t+x') 53 * = sin(t)cos(x')+cos(t)sin(x') 54 * = sin(t)(1+z*(qq1+z*qq2))+[cos(t)]*x*(1+z*(pp1+z*pp2)) 55 * = sin(t) + [sin(t)]*(z*(qq1+z*qq2))+ 56 * [cos(t)]*x*(1+z*(pp1+z*pp2)) 57 * 58 * Thus, 59 * let a= _TBL_sin_hi[i], b = _TBL_sin_lo[i], c= _TBL_cos_hi[i], 60 * x = (x-t)+y 61 * z = x*x; 62 * sin(t+x) = a+(b+ ((c*x)*(1+z*(pp1+z*pp2))+a*(z*(qq1+z*qq2))) 63 */ 64 65 #include "libm.h" 66 67 extern const long double _TBL_sinl_hi[], _TBL_sinl_lo[], _TBL_cosl_hi[]; 68 static const long double one = 1.0L; 69 70 /* 71 * 3 11 -122.32 72 * |sin(x) - (x+pp1*x +...+ pp5*x )| <= 2 for |x|<1/64 73 */ 74 static const long double 75 pp1 = -1.666666666666666666666666666586782940810e-0001L, 76 pp2 = +8.333333333333333333333003723660929317540e-0003L, 77 pp3 = -1.984126984126984076045903483778337804470e-0004L, 78 pp4 = +2.755731922361906641319723106210900949413e-0006L, 79 pp5 = -2.505198398570947019093998469135012057673e-0008L; 80 81 /* 82 * |(sin(x) - (x+p1*x^3+...+p8*x^17)| 83 * |------------------------------- | <= 2^-116.17 for |x|<0.1953125 84 * | x | 85 */ 86 static const long double 87 p1 = -1.666666666666666666666666666666211262297e-0001L, 88 p2 = +8.333333333333333333333333301497876908541e-0003L, 89 p3 = -1.984126984126984126984041302881180621922e-0004L, 90 p4 = +2.755731922398589064100587351307269621093e-0006L, 91 p5 = -2.505210838544163129378906953765595393873e-0008L, 92 p6 = +1.605904383643244375050998243778534074273e-0010L, 93 p7 = -7.647162722800685516901456114270824622699e-0013L, 94 p8 = +2.810046428661902961725428841068844462603e-0015L; 95 96 /* 97 * 2 10 -123.84 98 * |cos(x) - (1+qq1*x +...+ qq5*x )| <= 2 for |x|<=1/128 99 */ 100 static const long double 101 qq1 = -4.999999999999999999999999999999378373641e-0001L, 102 qq2 = +4.166666666666666666666665478399327703130e-0002L, 103 qq3 = -1.388888888888888888058211230618051613494e-0003L, 104 qq4 = +2.480158730156105377771585658905303111866e-0005L, 105 qq5 = -2.755728099762526325736488376695157008736e-0007L; 106 107 #define i0 0 108 109 long double 110 __k_sinl(long double x, long double y) 111 { 112 long double a, t, z, w; 113 int *pt = (int *)&t, *px = (int *)&x; 114 int i, j, hx, ix; 115 116 t = 1.0L; 117 hx = px[i0]; 118 ix = hx & 0x7fffffff; 119 120 if (ix < 0x3ffc9000) { 121 *(3 - i0 + (int *)&t) = -1; /* one-ulp */ 122 *(2 + (int *)&t) = -1; /* one-ulp */ 123 *(1 + (int *)&t) = -1; /* one-ulp */ 124 *(i0 + (int *)&t) -= 1; /* one-ulp */ 125 126 if (ix < 0x3fc60000) 127 if (((int)(x * t)) < 1) 128 return (x); 129 130 /* inexact and underflow */ 131 z = x * x; 132 t = z * (p1 + z * (p2 + z * (p3 + z * (p4 + z * (p5 + z * (p6 + 133 z * (p7 + z * p8))))))); 134 t = y + x * t; 135 return (x + t); 136 } 137 138 j = (ix + 0x400) & 0x7ffff800; 139 i = (j - 0x3ffc4000) >> 11; 140 pt[i0] = j; 141 142 if (hx > 0) 143 x = y - (t - x); 144 else 145 x = (-y) - (t + x); 146 147 a = _TBL_sinl_hi[i]; 148 z = x * x; 149 t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5)))); 150 w = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z * pp5))))); 151 t = _TBL_cosl_hi[i] * w + a * t; 152 t += _TBL_sinl_lo[i]; 153 154 if (hx < 0) 155 return (-a - t); 156 else 157 return (a + t); 158 }