Print this page
11210 libm should be cstyle(1ONBLD) clean

Split Close
Expand all
Collapse all
          --- old/usr/src/lib/libm/common/Q/__sincosl.c
          +++ new/usr/src/lib/libm/common/Q/__sincosl.c
↓ open down ↓ 14 lines elided ↑ open up ↑
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24   24   */
       25 +
  25   26  /*
  26   27   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27   28   * Use is subject to license terms.
  28   29   */
  29   30  
  30   31  /*
  31   32   * long double __k_sincos(long double x, long double y, long double *c);
  32   33   * kernel sincosl function on [-pi/4, pi/4], pi/4 ~ 0.785398164
  33   34   * Input x is assumed to be bounded by ~pi/4 in magnitude.
  34   35   * Input y is the tail of x.
  35   36   * return sinl(x) with *c = cosl(x)
  36   37   *
  37   38   * Table look up algorithm
  38   39   *      see __k_sinl and __k_cosl
  39   40   */
  40   41  
  41   42  #include "libm.h"
  42   43  
  43      -extern const long double _TBL_sinl_hi[], _TBL_sinl_lo[],
  44      -        _TBL_cosl_hi[], _TBL_cosl_lo[];
  45      -static const long double
  46      -        one     = 1.0L,
       44 +extern const long double _TBL_sinl_hi[], _TBL_sinl_lo[], _TBL_cosl_hi[],
       45 +        _TBL_cosl_lo[];
       46 +static const long double one = 1.0L;
       47 +
  47   48  /*
  48   49   *                   3           11       -122.32
  49   50   * |sin(x) - (x+pp1*x +...+ pp5*x  )| <= 2        for |x|<1/64
  50   51   */
  51      -        pp1     = -1.666666666666666666666666666586782940810e-0001L,
  52      -        pp2     = +8.333333333333333333333003723660929317540e-0003L,
  53      -        pp3     = -1.984126984126984076045903483778337804470e-0004L,
  54      -        pp4     = +2.755731922361906641319723106210900949413e-0006L,
  55      -        pp5     = -2.505198398570947019093998469135012057673e-0008L,
       52 +static const long double
       53 +        pp1 = -1.666666666666666666666666666586782940810e-0001L,
       54 +        pp2 = +8.333333333333333333333003723660929317540e-0003L,
       55 +        pp3 = -1.984126984126984076045903483778337804470e-0004L,
       56 +        pp4 = +2.755731922361906641319723106210900949413e-0006L,
       57 +        pp5 = -2.505198398570947019093998469135012057673e-0008L;
       58 +
  56   59  /*
  57   60   * |(sin(x) - (x+p1*x^3+...+p8*x^17)|
  58   61   * |------------------------------- | <= 2^-116.17 for |x|<0.1953125
  59   62   * |                 x              |
  60   63   */
  61      -        p1      = -1.666666666666666666666666666666211262297e-0001L,
  62      -        p2      = +8.333333333333333333333333301497876908541e-0003L,
  63      -        p3      = -1.984126984126984126984041302881180621922e-0004L,
  64      -        p4      = +2.755731922398589064100587351307269621093e-0006L,
  65      -        p5      = -2.505210838544163129378906953765595393873e-0008L,
  66      -        p6      = +1.605904383643244375050998243778534074273e-0010L,
  67      -        p7      = -7.647162722800685516901456114270824622699e-0013L,
  68      -        p8      = +2.810046428661902961725428841068844462603e-0015L,
       64 +static const long double
       65 +        p1 = -1.666666666666666666666666666666211262297e-0001L,
       66 +        p2 = +8.333333333333333333333333301497876908541e-0003L,
       67 +        p3 = -1.984126984126984126984041302881180621922e-0004L,
       68 +        p4 = +2.755731922398589064100587351307269621093e-0006L,
       69 +        p5 = -2.505210838544163129378906953765595393873e-0008L,
       70 +        p6 = +1.605904383643244375050998243778534074273e-0010L,
       71 +        p7 = -7.647162722800685516901456114270824622699e-0013L,
       72 +        p8 = +2.810046428661902961725428841068844462603e-0015L;
       73 +
  69   74  /*
  70   75   *                   2           10       -123.84
  71   76   * |cos(x) - (1+qq1*x +...+ qq5*x  )| <= 2        for |x|<=1/128
  72   77   */
  73      -        qq1     = -4.999999999999999999999999999999378373641e-0001L,
  74      -        qq2     = +4.166666666666666666666665478399327703130e-0002L,
  75      -        qq3     = -1.388888888888888888058211230618051613494e-0003L,
  76      -        qq4     = +2.480158730156105377771585658905303111866e-0005L,
  77      -        qq5     = -2.755728099762526325736488376695157008736e-0007L,
       78 +static const long double
       79 +        qq1 = -4.999999999999999999999999999999378373641e-0001L,
       80 +        qq2 = +4.166666666666666666666665478399327703130e-0002L,
       81 +        qq3 = -1.388888888888888888058211230618051613494e-0003L,
       82 +        qq4 = +2.480158730156105377771585658905303111866e-0005L,
       83 +        qq5 = -2.755728099762526325736488376695157008736e-0007L;
       84 +
  78   85  /*
  79   86   *                  2            16       -117.11
  80   87   * |cos(x) - (1+q1*x + ... + q8*x  )| <= 2        for |x|<= 0.15625
  81   88   */
  82      -        q1      = -4.999999999999999999999999999999756416975e-0001L,
  83      -        q2      = +4.166666666666666666666666664006066577258e-0002L,
  84      -        q3      = -1.388888888888888888888877700363937169637e-0003L,
  85      -        q4      = +2.480158730158730158494468463031814083559e-0005L,
  86      -        q5      = -2.755731922398586276322819250356005542871e-0007L,
  87      -        q6      = +2.087675698767424261441959760729854017855e-0009L,
  88      -        q7      = -1.147074481239662089072452129010790774761e-0011L,
  89      -        q8      = +4.777761647399651599730663422263531034782e-0014L;
       89 +static const long double
       90 +        q1 = -4.999999999999999999999999999999756416975e-0001L,
       91 +        q2 = +4.166666666666666666666666664006066577258e-0002L,
       92 +        q3 = -1.388888888888888888888877700363937169637e-0003L,
       93 +        q4 = +2.480158730158730158494468463031814083559e-0005L,
       94 +        q5 = -2.755731922398586276322819250356005542871e-0007L,
       95 +        q6 = +2.087675698767424261441959760729854017855e-0009L,
       96 +        q7 = -1.147074481239662089072452129010790774761e-0011L,
       97 +        q8 = +4.777761647399651599730663422263531034782e-0014L;
  90   98  
  91   99  #define i0      0
  92  100  
  93  101  long double
  94      -__k_sincosl(long double x, long double y, long double *c) {
      102 +__k_sincosl(long double x, long double y, long double *c)
      103 +{
  95  104          long double a1, a2, t, t1, t2, z, w;
  96      -        int *pt = (int *) &t, *px = (int *) &x;
      105 +        int *pt = (int *)&t, *px = (int *)&x;
  97  106          int i, j, hx, ix;
  98  107  
  99  108          t = 1.0L;
 100  109          hx = px[i0];
 101  110          ix = hx & 0x7fffffff;
      111 +
 102  112          if (ix < 0x3ffc4000) {
 103      -                if (ix < 0x3fc60000)
 104      -                        if (((int) x) == 0) {
      113 +                if (ix < 0x3fc60000) {
      114 +                        if (((int)x) == 0) {
 105  115                                  *c = one;
 106  116                                  return (x);
 107      -                        }       /* generate inexact */
      117 +                        }               /* generate inexact */
      118 +                }
      119 +
 108  120                  z = x * x;
 109  121  
 110  122                  if (ix < 0x3ff80000) {
 111      -                        *c = one + z * (qq1 + z * (qq2 + z * (qq3 +
 112      -                                z * (qq4 + z * qq5))));
 113      -                        t = z * (p1 + z * (p2 + z * (p3 + z * (p4 +
 114      -                                z * (p5 + z * p6)))));
      123 +                        *c = one + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 +
      124 +                            z * qq5))));
      125 +                        t = z * (p1 + z * (p2 + z * (p3 + z * (p4 + z * (p5 +
      126 +                            z * p6)))));
 115  127                  } else {
 116      -                        *c = one + z * (q1 + z * (q2 + z * (q3 + z * (q4 +
 117      -                                z * (q5 + z * (q6 + z * (q7 + z * q8)))))));
      128 +                        *c = one + z * (q1 + z * (q2 + z * (q3 + z * (q4 + z *
      129 +                            (q5 + z * (q6 + z * (q7 + z * q8)))))));
 118  130                          t = z * (p1 + z * (p2 + z * (p3 + z * (p4 + z * (p5 +
 119      -                                z * (p6 + z * (p7 + z * p8)))))));
      131 +                            z * (p6 + z * (p7 + z * p8)))))));
 120  132                  }
 121  133  
 122  134                  t = y + x * t;
 123  135                  return (x + t);
 124  136          }
      137 +
 125  138          j = (ix + 0x400) & 0x7ffff800;
 126  139          i = (j - 0x3ffc4000) >> 11;
 127  140          pt[i0] = j;
      141 +
 128  142          if (hx > 0)
 129  143                  x = y - (t - x);
 130  144          else
 131  145                  x = (-y) - (t + x);
      146 +
 132  147          a1 = _TBL_sinl_hi[i];
 133  148          z = x * x;
 134  149          t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
 135  150          w = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z * pp5)))));
 136  151          a2 = _TBL_cosl_hi[i];
 137  152          t2 = _TBL_cosl_lo[i] - (a1 * w - a2 * t);
 138  153          *c = a2 + t2;
 139  154          t1 = a2 * w + a1 * t;
 140  155          t1 += _TBL_sinl_lo[i];
      156 +
 141  157          if (hx < 0)
 142  158                  return (-a1 - t1);
 143  159          else
 144  160                  return (a1 + t1);
 145  161  }
    
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX