Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/LD/tanl.c
+++ new/usr/src/lib/libm/common/LD/tanl.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 31 #pragma weak __tanl = tanl
31 32
32 -/* INDENT OFF */
33 -/* cosl(x)
33 +/* BEGIN CSTYLED */
34 +/*
35 + * cosl(x)
34 36 * Table look-up algorithm by K.C. Ng, November, 1989.
35 37 *
36 38 * kernel function:
37 39 * __k_tanl ... tangent function on [-pi/4,pi/4]
38 40 * __rem_pio2l ... argument reduction routine
39 41 *
40 42 * Method.
41 43 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
42 44 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
43 45 * [-pi/2 , +pi/2], and let n = k mod 4.
44 46 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
45 47 *
46 48 * n sin(x) cos(x) tan(x)
47 49 * ----------------------------------------------------------
48 50 * 0 S C S/C
49 51 * 1 C -S -C/S
50 52 * 2 -S -C S/C
51 53 * 3 -C S -C/S
↓ open down ↓ |
8 lines elided |
↑ open up ↑ |
52 54 * ----------------------------------------------------------
53 55 *
54 56 * Special cases:
55 57 * Let trig be any of sin, cos, or tan.
56 58 * trig(+-INF) is NaN, with signals;
57 59 * trig(NaN) is that NaN;
58 60 *
59 61 * Accuracy:
60 62 * computer TRIG(x) returns trig(x) nearly rounded.
61 63 */
62 -/* INDENT ON */
64 +/* END CSTYLED */
63 65
64 66 #include "libm.h"
65 67 #include "longdouble.h"
66 68
67 69 #include <sys/isa_defs.h>
68 70
69 71 long double
70 -tanl(long double x) {
72 +tanl(long double x)
73 +{
71 74 long double y[2], z = 0.0L;
72 75 int n, ix;
76 +
73 77 #if defined(__i386) || defined(__amd64)
74 - int *px = (int *) &x;
78 + int *px = (int *)&x;
75 79 #endif
76 80
77 81 /* trig(Inf or NaN) is NaN */
78 82 if (!finitel(x))
79 - return x - x;
83 + return (x - x);
80 84
81 85 /* High word of x. */
82 86 #if defined(__i386) || defined(__amd64)
83 87 XTOI(px, ix);
84 88 #else
85 - ix = *(int *) &x;
89 + ix = *(int *)&x;
86 90 #endif
87 91
88 92 /* |x| ~< pi/4 */
89 93 ix &= 0x7fffffff;
90 - if (ix <= 0x3ffe9220)
91 - return __k_tanl(x, z, 0);
92 94
95 + if (ix <= 0x3ffe9220) {
96 + return (__k_tanl(x, z, 0));
97 + }
93 98 /* argument reduction needed */
94 99 else {
95 100 n = __rem_pio2l(x, y);
96 - return __k_tanl(y[0], y[1], n & 1);
101 + return (__k_tanl(y[0], y[1], n & 1));
97 102 }
98 103 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX