1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 /* BEGIN CSTYLED */ 32 /* 33 * long double sinpil(long double x), 34 * return long double precision sinl(pi*x). 35 * 36 * Algorithm, 10/17/2002, K.C. Ng 37 * ------------------------------ 38 * Let y = |4x|, z = floor(y), and n = (int)(z mod 8.0) (displayed in binary). 39 * 1. If y == z, then x is a multiple of pi/4. Return the following values: 40 * --------------------------------------------------- 41 * n x mod 2 sin(x*pi) cos(x*pi) tan(x*pi) 42 * --------------------------------------------------- 43 * 000 0.00 +0 ___ +1 ___ +0 44 * 001 0.25 +\/0.5 +\/0.5 +1 45 * 010 0.50 +1 ___ +0 ___ +inf 46 * 011 0.75 +\/0.5 -\/0.5 -1 47 * 100 1.00 -0 ___ -1 ___ +0 48 * 101 1.25 -\/0.5 -\/0.5 +1 49 * 110 1.50 -1 ___ -0 ___ +inf 50 * 111 1.75 -\/0.5 +\/0.5 -1 51 * --------------------------------------------------- 52 * 2. Otherwise, 53 * --------------------------------------------------- 54 * n t sin(x*pi) cos(x*pi) tan(x*pi) 55 * --------------------------------------------------- 56 * 000 (y-z)/4 sinpi(t) cospi(t) tanpi(t) 57 * 001 (z+1-y)/4 cospi(t) sinpi(t) 1/tanpi(t) 58 * 010 (y-z)/4 cospi(t) -sinpi(t) -1/tanpi(t) 59 * 011 (z+1-y)/4 sinpi(t) -cospi(t) -tanpi(t) 60 * 100 (y-z)/4 -sinpi(t) -cospi(t) tanpi(t) 61 * 101 (z+1-y)/4 -cospi(t) -sinpi(t) 1/tanpi(t) 62 * 110 (y-z)/4 -cospi(t) sinpi(t) -1/tanpi(t) 63 * 111 (z+1-y)/4 -sinpi(t) cospi(t) -tanpi(t) 64 * --------------------------------------------------- 65 * 66 * NOTE. This program compute sinpi/cospi(t<0.25) by __k_sin/cos(pi*t, 0.0). 67 * This will return a result with error slightly more than one ulp (but less 68 * than 2 ulp). If one wants accurate result, one may break up pi*t in 69 * high (tpi_h) and low (tpi_l) parts and call __k_sin/cos(tip_h, tip_lo) 70 * instead. 71 */ 72 /* END CSTYLED */ 73 74 #include "libm.h" 75 #include "longdouble.h" 76 77 #include <sys/isa_defs.h> 78 79 #define I(q, m) ((int *)&(q))[m] 80 #define U(q, m) ((unsigned *)&(q))[m] 81 #if defined(__i386) || defined(__amd64) 82 #define LDBL_MOST_SIGNIF_I(ld) ((I(ld, 2) << 16) | (0xffff & (I(ld, \ 83 1) >> 15))) 84 #define LDBL_LEAST_SIGNIF_U(ld) U(ld, 0) 85 #define PREC 64 86 #define PRECM1 63 87 #define PRECM2 62 88 89 static const long double twoPRECM2 = 9.223372036854775808000000000000000e+18L; 90 #else 91 #define LDBL_MOST_SIGNIF_I(ld) I(ld, 0) 92 #define LDBL_LEAST_SIGNIF_U(ld) U(ld, sizeof (long double) / \ 93 sizeof (int) - 1) 94 #define PREC 113 95 #define PRECM1 112 96 #define PRECM2 111 97 98 static const long double twoPRECM2 = 5.192296858534827628530496329220096e+33L; 99 #endif 100 101 static const long double zero = 0.0L, 102 quater = 0.25L, 103 one = 1.0L, 104 pi = 3.141592653589793238462643383279502884197e+0000L, 105 sqrth = 0.707106781186547524400844362104849039284835937688474, 106 tiny = 1.0e-100; 107 108 long double 109 sinpil(long double x) 110 { 111 long double y, z, t; 112 int hx, n, k; 113 unsigned lx; 114 115 hx = LDBL_MOST_SIGNIF_I(x); 116 lx = LDBL_LEAST_SIGNIF_U(x); 117 k = ((hx & 0x7fff0000) >> 16) - 0x3fff; 118 119 if (k >= PRECM2) { /* |x| >= 2**(Prec-2) */ 120 if (k >= 16384) { 121 y = x - x; 122 } else { 123 if (k >= PREC) { 124 y = zero; 125 } else if (k == PRECM1) { 126 y = (lx & 1) == 0 ? zero : -zero; 127 } else { /* k = Prec - 2 */ 128 y = (lx & 1) == 0 ? zero : one; 129 130 if ((lx & 2) != 0) 131 y = -y; 132 } 133 } 134 } else if (k < -2) { /* |x| < 0.25 */ 135 y = __k_sinl(pi * fabsl(x), zero); 136 } else { 137 /* y = |4x|, z = floor(y), and n = (int)(z mod 8.0) */ 138 y = 4.0L * fabsl(x); 139 140 if (k < PRECM2) { 141 z = y + twoPRECM2; 142 n = LDBL_LEAST_SIGNIF_U(z) & 7; /* 3 LSb of z */ 143 t = z - twoPRECM2; 144 k = 0; 145 146 if (t == y) { 147 k = 1; 148 } else if (t > y) { 149 n -= 1; 150 t = quater + (y - t) * quater; 151 } else { 152 t = (y - t) * quater; 153 } 154 } else { /* k = Prec-3 */ 155 n = LDBL_LEAST_SIGNIF_U(y) & 7; /* 3 LSb of z */ 156 k = 1; 157 } 158 159 if (k) { /* x = N/4 */ 160 if ((n & 1) != 0) 161 y = sqrth + tiny; 162 else 163 y = (n & 2) == 0 ? zero : one; 164 165 if ((n & 4) != 0) 166 y = -y; 167 } else { 168 if ((n & 1) != 0) 169 t = quater - t; 170 171 if (((n + (n & 1)) & 2) == 0) 172 y = __k_sinl(pi * t, zero); 173 else 174 y = __k_cosl(pi * t, zero); 175 176 if ((n & 4) != 0) 177 y = -y; 178 } 179 } 180 181 return (hx >= 0 ? y : -y); 182 } 183 184 #undef U 185 #undef LDBL_LEAST_SIGNIF_U 186 #undef I 187 #undef LDBL_MOST_SIGNIF_I