5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */
29
30 #pragma weak __sinl = sinl
31
32 /* INDENT OFF */
33 /* sinl(x)
34 * Table look-up algorithm by K.C. Ng, November, 1989.
35 *
36 * kernel function:
37 * __k_sinl ... sin function on [-pi/4,pi/4]
38 * __k_cosl ... cos function on [-pi/4,pi/4]
39 * __rem_pio2l ... argument reduction routine
40 *
41 * Method.
42 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
43 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
44 * [-pi/2 , +pi/2], and let n = k mod 4.
45 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
46 *
47 * n sin(x) cos(x) tan(x)
48 * ----------------------------------------------------------
49 * 0 S C S/C
50 * 1 C -S -C/S
51 * 2 -S -C S/C
52 * 3 -C S -C/S
53 * ----------------------------------------------------------
54 *
55 * Special cases:
56 * Let trig be any of sin, cos, or tan.
57 * trig(+-INF) is NaN, with signals;
58 * trig(NaN) is that NaN;
59 *
60 * Accuracy:
61 * computer TRIG(x) returns trig(x) nearly rounded.
62 */
63 /* INDENT ON */
64
65 #include "libm.h"
66 #include "longdouble.h"
67
68 #include <sys/isa_defs.h>
69
70 long double
71 sinl(long double x) {
72 long double y[2], z = 0.0L;
73 int n, ix;
74 #if defined(__i386) || defined(__amd64)
75 int *px = (int *) &x;
76 #endif
77
78 /* sin(Inf or NaN) is NaN */
79 if (!finitel(x))
80 return x - x;
81
82 /* High word of x. */
83 #if defined(__i386) || defined(__amd64)
84 XTOI(px, ix);
85 #else
86 ix = *(int *) &x;
87 #endif
88 /* |x| ~< pi/4 */
89 ix &= 0x7fffffff;
90 if (ix <= 0x3ffe9220)
91 return __k_sinl(x, z);
92
93 /* argument reduction needed */
94 else {
95 n = __rem_pio2l(x, y);
96 switch (n & 3) {
97 case 0:
98 return __k_sinl(y[0], y[1]);
99 case 1:
100 return __k_cosl(y[0], y[1]);
101 case 2:
102 return -__k_sinl(y[0], y[1]);
103 case 3:
104 return -__k_cosl(y[0], y[1]);
105 /* NOTREACHED */
106 }
107 }
108 return 0.0L;
109 }
|
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25
26 /*
27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
28 * Use is subject to license terms.
29 */
30
31 #pragma weak __sinl = sinl
32
33 /* BEGIN CSTYLED */
34 /*
35 * sinl(x)
36 * Table look-up algorithm by K.C. Ng, November, 1989.
37 *
38 * kernel function:
39 * __k_sinl ... sin function on [-pi/4,pi/4]
40 * __k_cosl ... cos function on [-pi/4,pi/4]
41 * __rem_pio2l ... argument reduction routine
42 *
43 * Method.
44 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
45 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
46 * [-pi/2 , +pi/2], and let n = k mod 4.
47 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
48 *
49 * n sin(x) cos(x) tan(x)
50 * ----------------------------------------------------------
51 * 0 S C S/C
52 * 1 C -S -C/S
53 * 2 -S -C S/C
54 * 3 -C S -C/S
55 * ----------------------------------------------------------
56 *
57 * Special cases:
58 * Let trig be any of sin, cos, or tan.
59 * trig(+-INF) is NaN, with signals;
60 * trig(NaN) is that NaN;
61 *
62 * Accuracy:
63 * computer TRIG(x) returns trig(x) nearly rounded.
64 */
65 /* END CSTYLED */
66
67 #include "libm.h"
68 #include "longdouble.h"
69
70 #include <sys/isa_defs.h>
71
72 long double
73 sinl(long double x)
74 {
75 long double y[2], z = 0.0L;
76 int n, ix;
77
78 #if defined(__i386) || defined(__amd64)
79 int *px = (int *)&x;
80 #endif
81
82 /* sin(Inf or NaN) is NaN */
83 if (!finitel(x))
84 return (x - x);
85
86 /* High word of x. */
87 #if defined(__i386) || defined(__amd64)
88 XTOI(px, ix);
89 #else
90 ix = *(int *)&x;
91 #endif
92 /* |x| ~< pi/4 */
93 ix &= 0x7fffffff;
94
95 if (ix <= 0x3ffe9220) {
96 return (__k_sinl(x, z));
97 }
98 /* argument reduction needed */
99 else {
100 n = __rem_pio2l(x, y);
101
102 switch (n & 3) {
103 case 0:
104 return (__k_sinl(y[0], y[1]));
105 case 1:
106 return (__k_cosl(y[0], y[1]));
107 case 2:
108 return (-__k_sinl(y[0], y[1]));
109 case 3:
110 return (-__k_cosl(y[0], y[1]));
111 /* NOTREACHED */
112 }
113 }
114
115 return (0.0L);
116 }
|