1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __sinhl = sinhl 32 33 #include "libm.h" 34 #include "longdouble.h" 35 36 /* BEGIN CSTYLED */ 37 /* 38 * SINH(X) 39 * RETURN THE HYPERBOLIC SINE OF X 40 * 41 * Method : 42 * 1. reduce x to non-negative by SINH(-x) = - SINH(x). 43 * 2. 44 * 45 * EXPM1(x) + EXPM1(x)/(EXPM1(x)+1) 46 * 0 <= x <= lnovft : SINH(x) := -------------------------------- 47 * 2 48 * 49 * lnovft <= x < INF : SINH(x) := EXP(x-MEP1*ln2)*2**ME 50 * 51 * here 52 * lnovft logarithm of the overflow threshold 53 * = MEP1*ln2 chopped to machine precision. 54 * ME maximum exponent 55 * MEP1 maximum exponent plus 1 56 * 57 * Special cases: 58 * SINH(x) is x if x is +INF, -INF, or NaN. 59 * only SINH(0)=0 is exact for finite argument. 60 * 61 */ 62 /* END CSTYLED */ 63 64 static const long double C[] = { 65 0.5L, 66 1.0L, 67 1.135652340629414394879149e+04L, 68 7.004447686242549087858985e-16L 69 }; 70 71 #define half C[0] 72 #define one C[1] 73 #define lnovft C[2] 74 #define lnovlo C[3] 75 76 long double 77 sinhl(long double x) 78 { 79 long double r, t; 80 81 if (!finitel(x)) 82 return (x + x); /* x is INF or NaN */ 83 84 r = fabsl(x); 85 86 if (r < lnovft) { 87 t = expm1l(r); 88 r = copysignl((t + t / (one + t)) * half, x); 89 } else { 90 r = copysignl(expl((r - lnovft) - lnovlo), x); 91 r = scalbnl(r, 16383); 92 } 93 94 return (r); 95 }