1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25
26 /*
27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
28 * Use is subject to license terms.
29 */
30
31 #pragma weak __sinhl = sinhl
32
33 #include "libm.h"
34 #include "longdouble.h"
35
36 /* BEGIN CSTYLED */
37 /*
38 * SINH(X)
39 * RETURN THE HYPERBOLIC SINE OF X
40 *
41 * Method :
42 * 1. reduce x to non-negative by SINH(-x) = - SINH(x).
43 * 2.
44 *
45 * EXPM1(x) + EXPM1(x)/(EXPM1(x)+1)
46 * 0 <= x <= lnovft : SINH(x) := --------------------------------
47 * 2
48 *
49 * lnovft <= x < INF : SINH(x) := EXP(x-MEP1*ln2)*2**ME
50 *
51 * here
52 * lnovft logarithm of the overflow threshold
53 * = MEP1*ln2 chopped to machine precision.
54 * ME maximum exponent
55 * MEP1 maximum exponent plus 1
56 *
57 * Special cases:
58 * SINH(x) is x if x is +INF, -INF, or NaN.
59 * only SINH(0)=0 is exact for finite argument.
60 *
61 */
62 /* END CSTYLED */
63
64 static const long double C[] = {
65 0.5L,
66 1.0L,
67 1.135652340629414394879149e+04L,
68 7.004447686242549087858985e-16L
69 };
70
71 #define half C[0]
72 #define one C[1]
73 #define lnovft C[2]
74 #define lnovlo C[3]
75
76 long double
77 sinhl(long double x)
78 {
79 long double r, t;
80
81 if (!finitel(x))
82 return (x + x); /* x is INF or NaN */
83
84 r = fabsl(x);
85
86 if (r < lnovft) {
87 t = expm1l(r);
88 r = copysignl((t + t / (one + t)) * half, x);
89 } else {
90 r = copysignl(expl((r - lnovft) - lnovlo), x);
91 r = scalbnl(r, 16383);
92 }
93
94 return (r);
95 }