5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */
29
30 #pragma weak __sincosl = sincosl
31
32 /* INDENT OFF */
33 /* cosl(x)
34 * Table look-up algorithm by K.C. Ng, November, 1989.
35 *
36 * kernel function:
37 * __k_sincosl ... sin and cos function on [-pi/4,pi/4]
38 * __rem_pio2l ... argument reduction routine
39 *
40 * Method.
41 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
42 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
43 * [-pi/2 , +pi/2], and let n = k mod 4.
44 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
45 *
46 * n sin(x) cos(x) tan(x)
47 * ----------------------------------------------------------
48 * 0 S C S/C
49 * 1 C -S -C/S
50 * 2 -S -C S/C
51 * 3 -C S -C/S
52 * ----------------------------------------------------------
53 *
54 * Special cases:
55 * Let trig be any of sin, cos, or tan.
56 * trig(+-INF) is NaN, with signals;
57 * trig(NaN) is that NaN;
58 *
59 * Accuracy:
60 * computer TRIG(x) returns trig(x) nearly rounded.
61 */
62 /* INDENT ON */
63
64 #include "libm.h"
65 #include "longdouble.h"
66
67 #include <sys/isa_defs.h>
68
69 void
70 sincosl(long double x, long double *s, long double *c) {
71 long double y[2], z = 0.0L;
72 int n, ix;
73 #if defined(__i386) || defined(__amd64)
74 int *px = (int *) &x;
75 #endif
76
77 /* trig(Inf or NaN) is NaN */
78 if (!finitel(x)) {
79 *s = *c = x - x;
80 return;
81 }
82
83 /* High word of x. */
84 #if defined(__i386) || defined(__amd64)
85 XTOI(px, ix);
86 #else
87 ix = *(int *) &x;
88 #endif
89
90 /* |x| ~< pi/4 */
91 ix &= 0x7fffffff;
92 if (ix <= 0x3ffe9220)
93 *s = __k_sincosl(x, z, c);
94
95 /* argument reduction needed */
96 else {
97 n = __rem_pio2l(x, y);
98 switch (n & 3) {
99 case 0:
100 *s = __k_sincosl(y[0], y[1], c);
101 break;
102 case 1:
103 *c = -__k_sincosl(y[0], y[1], s);
104 break;
105 case 2:
106 *s = -__k_sincosl(y[0], y[1], c);
107 *c = -*c;
108 break;
109 case 3:
110 *c = __k_sincosl(y[0], y[1], s);
111 *s = -*s;
112 }
113 }
114 }
|
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25
26 /*
27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
28 * Use is subject to license terms.
29 */
30
31 #pragma weak __sincosl = sincosl
32
33 /* BEGIN CSTYLED */
34 /*
35 * cosl(x)
36 * Table look-up algorithm by K.C. Ng, November, 1989.
37 *
38 * kernel function:
39 * __k_sincosl ... sin and cos function on [-pi/4,pi/4]
40 * __rem_pio2l ... argument reduction routine
41 *
42 * Method.
43 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
44 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
45 * [-pi/2 , +pi/2], and let n = k mod 4.
46 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
47 *
48 * n sin(x) cos(x) tan(x)
49 * ----------------------------------------------------------
50 * 0 S C S/C
51 * 1 C -S -C/S
52 * 2 -S -C S/C
53 * 3 -C S -C/S
54 * ----------------------------------------------------------
55 *
56 * Special cases:
57 * Let trig be any of sin, cos, or tan.
58 * trig(+-INF) is NaN, with signals;
59 * trig(NaN) is that NaN;
60 *
61 * Accuracy:
62 * computer TRIG(x) returns trig(x) nearly rounded.
63 */
64 /* END CSTYLED */
65
66 #include "libm.h"
67 #include "longdouble.h"
68
69 #include <sys/isa_defs.h>
70
71 void
72 sincosl(long double x, long double *s, long double *c)
73 {
74 long double y[2], z = 0.0L;
75 int n, ix;
76
77 #if defined(__i386) || defined(__amd64)
78 int *px = (int *)&x;
79 #endif
80
81 /* trig(Inf or NaN) is NaN */
82 if (!finitel(x)) {
83 *s = *c = x - x;
84 return;
85 }
86
87 /* High word of x. */
88 #if defined(__i386) || defined(__amd64)
89 XTOI(px, ix);
90 #else
91 ix = *(int *)&x;
92 #endif
93
94 /* |x| ~< pi/4 */
95 ix &= 0x7fffffff;
96
97 if (ix <= 0x3ffe9220) {
98 *s = __k_sincosl(x, z, c);
99 }
100 /* argument reduction needed */
101 else {
102 n = __rem_pio2l(x, y);
103
104 switch (n & 3) {
105 case 0:
106 *s = __k_sincosl(y[0], y[1], c);
107 break;
108 case 1:
109 *c = -__k_sincosl(y[0], y[1], s);
110 break;
111 case 2:
112 *s = -__k_sincosl(y[0], y[1], c);
113 *c = -*c;
114 break;
115 case 3:
116 *c = __k_sincosl(y[0], y[1], s);
117 *s = -*s;
118 }
119 }
120 }
|