1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __hypotl = hypotl 32 33 /* 34 * hypotl(x,y) 35 * Method : 36 * If z=x*x+y*y has error less than sqrt(2)/2 ulp than sqrt(z) has 37 * error less than 1 ulp. 38 * So, compute sqrt(x*x+y*y) with some care as follows: 39 * Assume x>y>0; 40 * 1. save and set rounding to round-to-nearest 41 * 2. if x > 2y use 42 * x1*x1+(y*y+(x2*(x+x2))) for x*x+y*y 43 * where x1 = x with lower 32 bits cleared, x2 = x-x1; else 44 * 3. if x <= 2y use 45 * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) 46 * where t1 = 2x with lower 64 bits cleared, t2 = 2x-t1, y1= y with 47 * lower 32 bits cleared, y2 = y-y1. 48 * 49 * NOTE: DO NOT remove parenthsis! 50 * 51 * Special cases: 52 * hypot(x,y) is INF if x or y is +INF or -INF; else 53 * hypot(x,y) is NAN if x or y is NAN. 54 * 55 * Accuracy: 56 * hypot(x,y) returns sqrt(x^2+y^2) with error less than 1 ulps (units 57 * in the last place) 58 */ 59 60 #include "libm.h" 61 62 #if defined(__x86) 63 extern enum fp_direction_type __swap87RD(enum fp_direction_type); 64 65 #define k 0x7fff 66 67 long double 68 hypotl(long double x, long double y) 69 { 70 long double t1, t2, y1, y2, w; 71 int *px = (int *)&x, *py = (int *)&y; 72 int *pt1 = (int *)&t1, *py1 = (int *)&y1; 73 enum fp_direction_type rd; 74 int j, nx, ny, nz; 75 76 px[2] &= 0x7fff; /* clear sign bit and padding bits of x and y */ 77 py[2] &= 0x7fff; 78 nx = px[2]; /* biased exponent of x and y */ 79 ny = py[2]; 80 81 if (ny > nx) { 82 w = x; 83 x = y; 84 y = w; 85 nz = ny; 86 ny = nx; 87 nx = nz; 88 } /* force nx >= ny */ 89 90 if (nx - ny >= 66) 91 return (x + y); /* x / y >= 2**65 */ 92 93 if (nx < 0x5ff3 && ny > 0x205b) { /* medium x,y */ 94 /* save and set RD to Rounding to nearest */ 95 rd = __swap87RD(fp_nearest); 96 w = x - y; 97 98 if (w > y) { 99 pt1[2] = px[2]; 100 pt1[1] = px[1]; 101 pt1[0] = 0; 102 t2 = x - t1; 103 x = sqrtl(t1 * t1 - (y * (-y) - t2 * (x + t1))); 104 } else { 105 x += x; 106 py1[2] = py[2]; 107 py1[1] = py[1]; 108 py1[0] = 0; 109 y2 = y - y1; 110 pt1[2] = px[2]; 111 pt1[1] = px[1]; 112 pt1[0] = 0; 113 t2 = x - t1; 114 x = sqrtl(t1 * y1 - (w * (-w) - (t2 * y1 + y2 * x))); 115 } 116 117 if (rd != fp_nearest) 118 __swap87RD(rd); /* restore rounding mode */ 119 120 return (x); 121 } else { 122 if (nx == k || ny == k) { /* x or y is INF or NaN */ 123 /* since nx >= ny; nx is always k within this block */ 124 if (px[1] == 0x80000000 && px[0] == 0) 125 return (x); 126 else if (ny == k && py[1] == 0x80000000 && py[0] == 0) 127 return (y); 128 else 129 return (x + y); 130 } 131 132 if (ny == 0) { 133 if (y == 0.L || x == 0.L) 134 return (x + y); 135 136 pt1[2] = 0x3fff + 16381; 137 pt1[1] = 0x80000000; 138 pt1[0] = 0; 139 py1[2] = 0x3fff - 16381; 140 py1[1] = 0x80000000; 141 py1[0] = 0; 142 x *= t1; 143 y *= t1; 144 return (y1 * hypotl(x, y)); 145 } 146 147 j = nx - 0x3fff; 148 px[2] -= j; 149 py[2] -= j; 150 pt1[2] = nx; 151 pt1[1] = 0x80000000; 152 pt1[0] = 0; 153 return (t1 * hypotl(x, y)); 154 } 155 } 156 #endif