Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/LD/erfl.c
+++ new/usr/src/lib/libm/common/LD/erfl.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 -/* long double function erf,erfc (long double x)
31 +/* BEGIN CSTYLED */
32 +/*
33 + * long double function erf,erfc (long double x)
31 34 * K.C. Ng, September, 1989.
32 35 * x
33 36 * 2 |\
34 37 * erf(x) = --------- | exp(-t*t)dt
35 - * sqrt(pi) \|
38 + * sqrt(pi) \|
36 39 * 0
37 40 *
38 41 * erfc(x) = 1-erf(x)
39 42 *
40 43 * method:
41 - * Since erf(-x) = -erf(x), we assume x>=0.
44 + * Since erf(-x) = -erf(x), we assume x>=0.
42 45 * For x near 0, we have the expansion
43 46 *
44 - * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....).
47 + * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....).
45 48 *
46 - * Since 2/sqrt(pi) = 1.128379167095512573896158903121545171688,
49 + * Since 2/sqrt(pi) = 1.128379167095512573896158903121545171688,
47 50 * we use x + x*P(x^2) to approximate erf(x). This formula will
48 51 * guarantee the error less than one ulp where x is not too far
49 52 * away from 0. We note that erf(x)=x at x = 0.6174...... After
50 53 * some experiment, we choose the following approximation on
51 54 * interval [0,0.84375].
52 55 *
53 56 * For x in [0,0.84375]
54 57 * 2 2 4 40
55 - * P = P(x ) = (p0 + p1 * x + p2 * x + ... + p20 * x )
58 + * P = P(x ) = (p0 + p1 * x + p2 * x + ... + p20 * x )
56 59 *
57 60 * erf(x) = x + x*P
58 - * erfc(x) = 1 - erf(x) if x<=0.25
61 + * erfc(x) = 1 - erf(x) if x<=0.25
59 62 * = 0.5 + ((0.5-x)-x*P) if x in [0.25,0.84375]
60 63 * precision: |P(x^2)-(erf(x)-x)/x| <= 2**-122.50
61 64 *
62 65 * For x in [0.84375,1.25], let s = x - 1, and
63 66 * c = 0.84506291151 rounded to single (24 bits)
64 67 * erf(x) = c + P1(s)/Q1(s)
65 68 * erfc(x) = (1-c) - P1(s)/Q1(s)
66 69 * precision: |P1/Q1 - (erf(x)-c)| <= 2**-118.41
67 70 *
68 71 *
69 72 * For x in [1.25,1.75], let s = x - 1.5, and
70 73 * c = 0.95478588343 rounded to single (24 bits)
71 74 * erf(x) = c + P2(s)/Q2(s)
72 75 * erfc(x) = (1-c) - P2(s)/Q2(s)
73 76 * precision: |P1/Q1 - (erf(x)-c)| <= 2**-123.83
74 77 *
75 78 *
76 79 * For x in [1.75,16/3]
77 80 * erfc(x) = exp(-x*x)*(1/x)*R1(1/x)/S1(1/x)
78 81 * erf(x) = 1 - erfc(x)
79 82 * precision: absolute error of R1/S1 is bounded by 2**-124.03
80 83 *
81 84 * For x in [16/3,107]
82 85 * erfc(x) = exp(-x*x)*(1/x)*R2(1/x)/S2(1/x)
83 86 * erf(x) = 1 - erfc(x) (if x>=9 simple return erf(x)=1 with inexact)
↓ open down ↓ |
15 lines elided |
↑ open up ↑ |
84 87 * precision: absolute error of R2/S2 is bounded by 2**-120.07
85 88 *
86 89 * Else if inf > x >= 107
87 90 * erf(x) = 1 with inexact
88 91 * erfc(x) = 0 with underflow
89 92 *
90 93 * Special case:
91 94 * erf(inf) = 1
92 95 * erfc(inf) = 0
93 96 */
97 +/* END CSTYLED */
94 98
95 99 #pragma weak __erfl = erfl
96 100 #pragma weak __erfcl = erfcl
97 101
98 102 #include "libm.h"
99 103 #include "longdouble.h"
100 104
101 -static long double
102 -tiny = 1e-40L,
103 -nearunfl = 1e-4000L,
104 -half = 0.5L,
105 -one = 1.0L,
106 -onehalf = 1.5L,
107 -L16_3 = 16.0L/3.0L;
105 +static long double tiny = 1e-40L,
106 + nearunfl = 1e-4000L,
107 + half = 0.5L,
108 + one = 1.0L,
109 + onehalf = 1.5L,
110 + L16_3 = 16.0L / 3.0L;
111 +
108 112 /*
109 113 * Coefficients for even polynomial P for erf(x)=x+x*P(x^2) on [0,0.84375]
110 114 */
111 -static long double P[] = { /* 21 coeffs */
112 - 1.283791670955125738961589031215451715556e-0001L,
113 - -3.761263890318375246320529677071815594603e-0001L,
114 - 1.128379167095512573896158903121205899135e-0001L,
115 - -2.686617064513125175943235483344625046092e-0002L,
116 - 5.223977625442187842111846652980454568389e-0003L,
117 - -8.548327023450852832546626271083862724358e-0004L,
118 - 1.205533298178966425102164715902231976672e-0004L,
119 - -1.492565035840625097674944905027897838996e-0005L,
120 - 1.646211436588924733604648849172936692024e-0006L,
121 - -1.636584469123491976815834704799733514987e-0007L,
122 - 1.480719281587897445302529007144770739305e-0008L,
123 - -1.229055530170782843046467986464722047175e-0009L,
124 - 9.422759064320307357553954945760654341633e-0011L,
125 - -6.711366846653439036162105104991433380926e-0012L,
126 - 4.463224090341893165100275380693843116240e-0013L,
127 - -2.783513452582658245422635662559779162312e-0014L,
128 - 1.634227412586960195251346878863754661546e-0015L,
129 - -9.060782672889577722765711455623117802795e-0017L,
130 - 4.741341801266246873412159213893613602354e-0018L,
131 - -2.272417596497826188374846636534317381203e-0019L,
132 - 8.069088733716068462496835658928566920933e-0021L,
115 +static long double P[] = { /* 21 coeffs */
116 + 1.283791670955125738961589031215451715556e-0001L,
117 + -3.761263890318375246320529677071815594603e-0001L,
118 + 1.128379167095512573896158903121205899135e-0001L,
119 + -2.686617064513125175943235483344625046092e-0002L,
120 + 5.223977625442187842111846652980454568389e-0003L,
121 + -8.548327023450852832546626271083862724358e-0004L,
122 + 1.205533298178966425102164715902231976672e-0004L,
123 + -1.492565035840625097674944905027897838996e-0005L,
124 + 1.646211436588924733604648849172936692024e-0006L,
125 + -1.636584469123491976815834704799733514987e-0007L,
126 + 1.480719281587897445302529007144770739305e-0008L,
127 + -1.229055530170782843046467986464722047175e-0009L,
128 + 9.422759064320307357553954945760654341633e-0011L,
129 + -6.711366846653439036162105104991433380926e-0012L,
130 + 4.463224090341893165100275380693843116240e-0013L,
131 + -2.783513452582658245422635662559779162312e-0014L,
132 + 1.634227412586960195251346878863754661546e-0015L,
133 + -9.060782672889577722765711455623117802795e-0017L,
134 + 4.741341801266246873412159213893613602354e-0018L,
135 + -2.272417596497826188374846636534317381203e-0019L,
136 + 8.069088733716068462496835658928566920933e-0021L,
133 137 };
134 138
135 139 /*
136 140 * Rational erf(x) = ((float)0.84506291151) + P1(x-1)/Q1(x-1) on [0.84375,1.25]
137 141 */
138 -static long double C1 = (long double)((float)0.84506291151);
139 -static long double P1[] = { /* 12 top coeffs */
140 - -2.362118560752659955654364917390741930316e-0003L,
141 - 4.129623379624420034078926610650759979146e-0001L,
142 - -3.973857505403547283109417923182669976904e-0002L,
143 - 4.357503184084022439763567513078036755183e-0002L,
144 - 8.015593623388421371247676683754171456950e-0002L,
145 - -1.034459310403352486685467221776778474602e-0002L,
146 - 5.671850295381046679675355719017720821383e-0003L,
147 - 1.219262563232763998351452194968781174318e-0003L,
148 - 5.390833481581033423020320734201065475098e-0004L,
149 - -1.978853912815115495053119023517805528300e-0004L,
150 - 6.184234513953600118335017885706420552487e-0005L,
151 - -5.331802711697810861017518515816271808286e-0006L,
142 +static long double C1 = (long double)((float)0.84506291151);
143 +static long double P1[] = { /* 12 top coeffs */
144 + -2.362118560752659955654364917390741930316e-0003L,
145 + 4.129623379624420034078926610650759979146e-0001L,
146 + -3.973857505403547283109417923182669976904e-0002L,
147 + 4.357503184084022439763567513078036755183e-0002L,
148 + 8.015593623388421371247676683754171456950e-0002L,
149 + -1.034459310403352486685467221776778474602e-0002L,
150 + 5.671850295381046679675355719017720821383e-0003L,
151 + 1.219262563232763998351452194968781174318e-0003L,
152 + 5.390833481581033423020320734201065475098e-0004L,
153 + -1.978853912815115495053119023517805528300e-0004L,
154 + 6.184234513953600118335017885706420552487e-0005L,
155 + -5.331802711697810861017518515816271808286e-0006L,
152 156 };
153 -static long double Q1[] = { /* 12 bottom coeffs with leading 1.0 hidden */
154 - 9.081506296064882195280178373107623196655e-0001L,
155 - 6.821049531968204097604392183650687642520e-0001L,
156 - 4.067869178233539502315055970743271822838e-0001L,
157 - 1.702332233546316765818144723063881095577e-0001L,
158 - 7.498098377690553934266423088708614219356e-0002L,
159 - 2.050154396918178697056927234366372760310e-0002L,
160 - 7.012988534031999899054782333851905939379e-0003L,
161 - 1.149904787014400354649843451234570731076e-0003L,
162 - 3.185620255011299476196039491205159718620e-0004L,
163 - 1.273405072153008775426376193374105840517e-0005L,
164 - 4.753866999959432971956781228148402971454e-0006L,
165 - -1.002287602111660026053981728549540200683e-0006L,
157 +
158 +static long double Q1[] = { /* 12 bottom coeffs with leading 1.0 hidden */
159 + 9.081506296064882195280178373107623196655e-0001L,
160 + 6.821049531968204097604392183650687642520e-0001L,
161 + 4.067869178233539502315055970743271822838e-0001L,
162 + 1.702332233546316765818144723063881095577e-0001L,
163 + 7.498098377690553934266423088708614219356e-0002L,
164 + 2.050154396918178697056927234366372760310e-0002L,
165 + 7.012988534031999899054782333851905939379e-0003L,
166 + 1.149904787014400354649843451234570731076e-0003L,
167 + 3.185620255011299476196039491205159718620e-0004L,
168 + 1.273405072153008775426376193374105840517e-0005L,
169 + 4.753866999959432971956781228148402971454e-0006L,
170 + -1.002287602111660026053981728549540200683e-0006L,
166 171 };
172 +
167 173 /*
168 174 * Rational erf(x) = ((float)0.95478588343) + P2(x-1.5)/Q2(x-1.5)
169 175 * on [1.25,1.75]
170 176 */
171 -static long double C2 = (long double)((float)0.95478588343);
172 -static long double P2[] = { /* 12 top coeffs */
173 - 1.131926304864446730135126164594785863512e-0002L,
174 - 1.273617996967754151544330055186210322832e-0001L,
175 - -8.169980734667512519897816907190281143423e-0002L,
176 - 9.512267486090321197833634271787944271746e-0002L,
177 - -2.394251569804872160005274999735914368170e-0002L,
178 - 1.108768660227528667525252333184520222905e-0002L,
179 - 3.527435492933902414662043314373277494221e-0004L,
180 - 4.946116273341953463584319006669474625971e-0004L,
181 - -4.289851942513144714600285769022420962418e-0005L,
182 - 8.304719841341952705874781636002085119978e-0005L,
183 - -1.040460226177309338781902252282849903189e-0005L,
184 - 2.122913331584921470381327583672044434087e-0006L,
177 +static long double C2 = (long double)((float)0.95478588343);
178 +static long double P2[] = { /* 12 top coeffs */
179 + 1.131926304864446730135126164594785863512e-0002L,
180 + 1.273617996967754151544330055186210322832e-0001L,
181 + -8.169980734667512519897816907190281143423e-0002L,
182 + 9.512267486090321197833634271787944271746e-0002L,
183 + -2.394251569804872160005274999735914368170e-0002L,
184 + 1.108768660227528667525252333184520222905e-0002L,
185 + 3.527435492933902414662043314373277494221e-0004L,
186 + 4.946116273341953463584319006669474625971e-0004L,
187 + -4.289851942513144714600285769022420962418e-0005L,
188 + 8.304719841341952705874781636002085119978e-0005L,
189 + -1.040460226177309338781902252282849903189e-0005L,
190 + 2.122913331584921470381327583672044434087e-0006L,
185 191 };
186 -static long double Q2[] = { /* 13 bottom coeffs with leading 1.0 hidden */
187 - 7.448815737306992749168727691042003832150e-0001L,
188 - 7.161813850236008294484744312430122188043e-0001L,
189 - 3.603134756584225766144922727405641236121e-0001L,
190 - 1.955811609133766478080550795194535852653e-0001L,
191 - 7.253059963716225972479693813787810711233e-0002L,
192 - 2.752391253757421424212770221541238324978e-0002L,
193 - 7.677654852085240257439050673446546828005e-0003L,
194 - 2.141102244555509687346497060326630061069e-0003L,
195 - 4.342123013830957093949563339130674364271e-0004L,
196 - 8.664587895570043348530991997272212150316e-0005L,
197 - 1.109201582511752087060167429397033701988e-0005L,
198 - 1.357834375781831062713347000030984364311e-0006L,
199 - 4.957746280594384997273090385060680016451e-0008L,
192 +
193 +static long double Q2[] = { /* 13 bottom coeffs with leading 1.0 hidden */
194 + 7.448815737306992749168727691042003832150e-0001L,
195 + 7.161813850236008294484744312430122188043e-0001L,
196 + 3.603134756584225766144922727405641236121e-0001L,
197 + 1.955811609133766478080550795194535852653e-0001L,
198 + 7.253059963716225972479693813787810711233e-0002L,
199 + 2.752391253757421424212770221541238324978e-0002L,
200 + 7.677654852085240257439050673446546828005e-0003L,
201 + 2.141102244555509687346497060326630061069e-0003L,
202 + 4.342123013830957093949563339130674364271e-0004L,
203 + 8.664587895570043348530991997272212150316e-0005L,
204 + 1.109201582511752087060167429397033701988e-0005L,
205 + 1.357834375781831062713347000030984364311e-0006L,
206 + 4.957746280594384997273090385060680016451e-0008L,
200 207 };
208 +
201 209 /*
202 210 * erfc(x) = exp(-x*x)/x * R1(1/x)/S1(1/x) on [1.75, 16/3]
203 211 */
204 -static long double R1[] = { /* 14 top coeffs */
205 - 4.630195122654315016370705767621550602948e+0006L,
206 - 1.257949521746494830700654204488675713628e+0007L,
207 - 1.704153822720260272814743497376181625707e+0007L,
208 - 1.502600568706061872381577539537315739943e+0007L,
209 - 9.543710793431995284827024445387333922861e+0006L,
210 - 4.589344808584091011652238164935949522427e+0006L,
211 - 1.714660662941745791190907071920671844289e+0006L,
212 - 5.034802147768798894307672256192466283867e+0005L,
213 - 1.162286400443554670553152110447126850725e+0005L,
214 - 2.086643834548901681362757308058660399137e+0004L,
215 - 2.839793161868140305907004392890348777338e+0003L,
216 - 2.786687241658423601778258694498655680778e+0002L,
217 - 1.779177837102695602425897452623985786464e+0001L,
218 - 5.641895835477470769043614623819144434731e-0001L,
212 +static long double R1[] = { /* 14 top coeffs */
213 + 4.630195122654315016370705767621550602948e+0006L,
214 + 1.257949521746494830700654204488675713628e+0007L,
215 + 1.704153822720260272814743497376181625707e+0007L,
216 + 1.502600568706061872381577539537315739943e+0007L,
217 + 9.543710793431995284827024445387333922861e+0006L,
218 + 4.589344808584091011652238164935949522427e+0006L,
219 + 1.714660662941745791190907071920671844289e+0006L,
220 + 5.034802147768798894307672256192466283867e+0005L,
221 + 1.162286400443554670553152110447126850725e+0005L,
222 + 2.086643834548901681362757308058660399137e+0004L,
223 + 2.839793161868140305907004392890348777338e+0003L,
224 + 2.786687241658423601778258694498655680778e+0002L,
225 + 1.779177837102695602425897452623985786464e+0001L,
226 + 5.641895835477470769043614623819144434731e-0001L,
219 227 };
220 -static long double S1[] = { /* 15 bottom coeffs with leading 1.0 hidden */
221 - 4.630195122654331529595606896287596843110e+0006L,
222 - 1.780411093345512024324781084220509055058e+0007L,
223 - 3.250113097051800703707108623715776848283e+0007L,
224 - 3.737857099176755050912193712123489115755e+0007L,
225 - 3.029787497516578821459174055870781168593e+0007L,
226 - 1.833850619965384765005769632103205777227e+0007L,
227 - 8.562719999736915722210391222639186586498e+0006L,
228 - 3.139684562074658971315545539760008136973e+0006L,
229 - 9.106421313731384880027703627454366930945e+0005L,
230 - 2.085108342384266508613267136003194920001e+0005L,
231 - 3.723126272693120340730491416449539290600e+0004L,
232 - 5.049169878567344046145695360784436929802e+0003L,
233 - 4.944274532748010767670150730035392093899e+0002L,
234 - 3.153510608818213929982940249162268971412e+0001L,
235 - 1.0e00L,
228 +
229 +static long double S1[] = { /* 15 bottom coeffs with leading 1.0 hidden */
230 + 4.630195122654331529595606896287596843110e+0006L,
231 + 1.780411093345512024324781084220509055058e+0007L,
232 + 3.250113097051800703707108623715776848283e+0007L,
233 + 3.737857099176755050912193712123489115755e+0007L,
234 + 3.029787497516578821459174055870781168593e+0007L,
235 + 1.833850619965384765005769632103205777227e+0007L,
236 + 8.562719999736915722210391222639186586498e+0006L,
237 + 3.139684562074658971315545539760008136973e+0006L,
238 + 9.106421313731384880027703627454366930945e+0005L,
239 + 2.085108342384266508613267136003194920001e+0005L,
240 + 3.723126272693120340730491416449539290600e+0004L,
241 + 5.049169878567344046145695360784436929802e+0003L,
242 + 4.944274532748010767670150730035392093899e+0002L,
243 + 3.153510608818213929982940249162268971412e+0001L,
244 + 1.0e00L,
236 245 };
237 246
238 247 /*
239 248 * erfc(x) = exp(-x*x)/x * R2(1/x)/S2(1/x) on [16/3, 107]
240 249 */
241 -static long double R2[] = { /* 15 top coeffs in reverse order!!*/
242 - 2.447288012254302966796326587537136931669e+0005L,
243 - 8.768592567189861896653369912716538739016e+0005L,
244 - 1.552293152581780065761497908005779524953e+0006L,
245 - 1.792075924835942935864231657504259926729e+0006L,
246 - 1.504001463155897344947500222052694835875e+0006L,
247 - 9.699485556326891411801230186016013019935e+0005L,
248 - 4.961449933661807969863435013364796037700e+0005L,
249 - 2.048726544693474028061176764716228273791e+0005L,
250 - 6.891532964330949722479061090551896886635e+0004L,
251 - 1.888014709010307507771964047905823237985e+0004L,
252 - 4.189692064988957745054734809642495644502e+0003L,
253 - 7.362346487427048068212968889642741734621e+0002L,
254 - 9.980359714211411423007641056580813116207e+0001L,
255 - 9.426910895135379181107191962193485174159e+0000L,
256 - 5.641895835477562869480794515623601280429e-0001L,
250 +static long double R2[] = { /* 15 top coeffs in reverse order!! */
251 + 2.447288012254302966796326587537136931669e+0005L,
252 + 8.768592567189861896653369912716538739016e+0005L,
253 + 1.552293152581780065761497908005779524953e+0006L,
254 + 1.792075924835942935864231657504259926729e+0006L,
255 + 1.504001463155897344947500222052694835875e+0006L,
256 + 9.699485556326891411801230186016013019935e+0005L,
257 + 4.961449933661807969863435013364796037700e+0005L,
258 + 2.048726544693474028061176764716228273791e+0005L,
259 + 6.891532964330949722479061090551896886635e+0004L,
260 + 1.888014709010307507771964047905823237985e+0004L,
261 + 4.189692064988957745054734809642495644502e+0003L,
262 + 7.362346487427048068212968889642741734621e+0002L,
263 + 9.980359714211411423007641056580813116207e+0001L,
264 + 9.426910895135379181107191962193485174159e+0000L,
265 + 5.641895835477562869480794515623601280429e-0001L,
257 266 };
258 -static long double S2[] = { /* 16 coefficients */
259 - 2.447282203601902971246004716790604686880e+0005L,
260 - 1.153009852759385309367759460934808489833e+0006L,
261 - 2.608580649612639131548966265078663384849e+0006L,
262 - 3.766673917346623308850202792390569025740e+0006L,
263 - 3.890566255138383910789924920541335370691e+0006L,
264 - 3.052882073900746207613166259994150527732e+0006L,
265 - 1.885574519970380988460241047248519418407e+0006L,
266 - 9.369722034759943185851450846811445012922e+0005L,
267 - 3.792278350536686111444869752624492443659e+0005L,
268 - 1.257750606950115799965366001773094058720e+0005L,
269 - 3.410830600242369370645608634643620355058e+0004L,
270 - 7.513984469742343134851326863175067271240e+0003L,
271 - 1.313296320593190002554779998138695507840e+0003L,
272 - 1.773972700887629157006326333696896516769e+0002L,
273 - 1.670876451822586800422009013880457094162e+0001L,
274 - 1.000L,
267 +
268 +static long double S2[] = { /* 16 coefficients */
269 + 2.447282203601902971246004716790604686880e+0005L,
270 + 1.153009852759385309367759460934808489833e+0006L,
271 + 2.608580649612639131548966265078663384849e+0006L,
272 + 3.766673917346623308850202792390569025740e+0006L,
273 + 3.890566255138383910789924920541335370691e+0006L,
274 + 3.052882073900746207613166259994150527732e+0006L,
275 + 1.885574519970380988460241047248519418407e+0006L,
276 + 9.369722034759943185851450846811445012922e+0005L,
277 + 3.792278350536686111444869752624492443659e+0005L,
278 + 1.257750606950115799965366001773094058720e+0005L,
279 + 3.410830600242369370645608634643620355058e+0004L,
280 + 7.513984469742343134851326863175067271240e+0003L,
281 + 1.313296320593190002554779998138695507840e+0003L,
282 + 1.773972700887629157006326333696896516769e+0002L,
283 + 1.670876451822586800422009013880457094162e+0001L,
284 + 1.000L,
275 285 };
276 286
277 -long double erfl(x)
278 -long double x;
287 +long double
288 +erfl(long double x)
279 289 {
280 - long double erfcl(long double),s,y,t;
290 + long double erfcl(long double), s, y, t;
281 291
282 292 if (!finitel(x)) {
283 - if (x != x) return x+x; /* NaN */
284 - return copysignl(one,x); /* return +-1.0 is x=Inf */
293 + if (x != x)
294 + return (x + x); /* NaN */
295 +
296 + return (copysignl(one, x)); /* return +-1.0 is x=Inf */
285 297 }
286 298
287 299 y = fabsl(x);
300 +
288 301 if (y <= 0.84375L) {
289 - if (y<=tiny) return x+P[0]*x;
290 - s = y*y;
291 - t = __poly_libmq(s,21,P);
292 - return x+x*t;
302 + if (y <= tiny)
303 + return (x + P[0] * x);
304 +
305 + s = y * y;
306 + t = __poly_libmq(s, 21, P);
307 + return (x + x * t);
293 308 }
294 - if (y<=1.25L) {
295 - s = y-one;
296 - t = C1+__poly_libmq(s,12,P1)/(one+s*__poly_libmq(s,12,Q1));
297 - return (signbitl(x))? -t: t;
298 - } else if (y<=1.75L) {
299 - s = y-onehalf;
300 - t = C2+__poly_libmq(s,12,P2)/(one+s*__poly_libmq(s,13,Q2));
301 - return (signbitl(x))? -t: t;
309 +
310 + if (y <= 1.25L) {
311 + s = y - one;
312 + t = C1 + __poly_libmq(s, 12, P1) / (one + s * __poly_libmq(s,
313 + 12, Q1));
314 + return ((signbitl(x)) ? -t : t);
315 + } else if (y <= 1.75L) {
316 + s = y - onehalf;
317 + t = C2 + __poly_libmq(s, 12, P2) / (one + s * __poly_libmq(s,
318 + 13, Q2));
319 + return ((signbitl(x)) ? -t : t);
302 320 }
303 - if (y<=9.0L) t = erfcl(y); else t = tiny;
304 - return (signbitl(x))? t-one: one-t;
321 +
322 + if (y <= 9.0L)
323 + t = erfcl(y);
324 + else
325 + t = tiny;
326 +
327 + return ((signbitl(x)) ? t - one : one - t);
305 328 }
306 329
307 -long double erfcl(x)
308 -long double x;
330 +long double
331 +erfcl(long double x)
309 332 {
310 - long double erfl(long double),s,y,t;
333 + long double s, y, t;
311 334
312 335 if (!finitel(x)) {
313 - if (x != x) return x+x; /* NaN */
314 - /* return 2.0 if x= -inf
315 - 0.0 if x= +inf */
316 - if (x<0.0L) return 2.0L; else return 0.0L;
336 + if (x != x)
337 + return (x + x); /* NaN */
338 +
339 + /*
340 + * return 2.0 if x = -inf
341 + * 0.0 if x = +inf
342 + */
343 + if (x < 0.0L)
344 + return (2.0L);
345 + else
346 + return (0.0L);
317 347 }
318 348
319 349 if (x <= 0.84375L) {
320 - if (x<=0.25) return one-erfl(x);
321 - s = x*x;
322 - t = half-x;
323 - t = t - x*__poly_libmq(s,21,P);
324 - return half+t;
350 + if (x <= 0.25)
351 + return (one - erfl(x));
352 +
353 + s = x * x;
354 + t = half - x;
355 + t = t - x * __poly_libmq(s, 21, P);
356 + return (half + t);
325 357 }
326 - if (x<=1.25L) {
327 - s = x-one;
328 - t = one-C1;
329 - return t - __poly_libmq(s,12,P1)/(one+s*__poly_libmq(s,12,Q1));
330 - } else if (x<=1.75L) {
331 - s = x-onehalf;
332 - t = one-C2;
333 - return t - __poly_libmq(s,12,P2)/(one+s*__poly_libmq(s,13,Q2));
358 +
359 + if (x <= 1.25L) {
360 + s = x - one;
361 + t = one - C1;
362 + return (t - __poly_libmq(s, 12, P1) / (one + s * __poly_libmq(s,
363 + 12, Q1)));
364 + } else if (x <= 1.75L) {
365 + s = x - onehalf;
366 + t = one - C2;
367 + return (t - __poly_libmq(s, 12, P2) / (one + s * __poly_libmq(s,
368 + 13, Q2)));
334 369 }
335 - if (x>=107.0L) return nearunfl*nearunfl; /* underflow */
336 - else if (x >= L16_3) {
337 - y = __poly_libmq(x,15,R2);
338 - t = y/__poly_libmq(x,16,S2);
370 +
371 + if (x >= 107.0L) {
372 + return (nearunfl * nearunfl); /* underflow */
373 + } else if (x >= L16_3) {
374 + y = __poly_libmq(x, 15, R2);
375 + t = y / __poly_libmq(x, 16, S2);
339 376 } else {
340 - y = __poly_libmq(x,14,R1);
341 - t = y/__poly_libmq(x,15,S1);
377 + y = __poly_libmq(x, 14, R1);
378 + t = y / __poly_libmq(x, 15, S1);
342 379 }
380 +
343 381 /* see comment in ../Q/erfl.c */
344 382 y = x;
345 - *(int*)&y = 0;
346 - t *= expl(-y*y)*expl(-(x-y)*(x+y));
347 - return t;
383 + *(int *)&y = 0;
384 + t *= expl(-y * y) * expl(-(x - y) * (x + y));
385 + return (t);
348 386 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX