Print this page
11210 libm should be cstyle(1ONBLD) clean

@@ -20,16 +20,19 @@
  */
 
 /*
  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  */
+
 /*
  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  * Use is subject to license terms.
  */
 
-/* long double function erf,erfc (long double x)
+/* BEGIN CSTYLED */
+/*
+ * long double function erf,erfc (long double x)
  * K.C. Ng, September, 1989.
  *                           x
  *                    2      |\
  *     erf(x)  =  ---------  | exp(-t*t)dt
  *                 sqrt(pi) \|

@@ -89,24 +92,25 @@
  *
  *      Special case:
  *         erf(inf)  = 1
  *         erfc(inf) = 0
  */
+/* END CSTYLED */
 
 #pragma weak __erfl = erfl
 #pragma weak __erfcl = erfcl
 
 #include "libm.h"
 #include "longdouble.h"
 
-static long double
-tiny        = 1e-40L,
-nearunfl    = 1e-4000L,
-half        = 0.5L,
-one         = 1.0L,
-onehalf     = 1.5L,
-L16_3       = 16.0L/3.0L;
+static long double tiny = 1e-40L,
+        nearunfl = 1e-4000L,
+        half = 0.5L,
+        one = 1.0L,
+        onehalf = 1.5L,
+        L16_3 = 16.0L / 3.0L;
+
 /*
  * Coefficients for even polynomial P for erf(x)=x+x*P(x^2) on [0,0.84375]
  */
 static long double P[] = {      /* 21 coeffs */
    1.283791670955125738961589031215451715556e-0001L,

@@ -148,10 +152,11 @@
    5.390833481581033423020320734201065475098e-0004L,
   -1.978853912815115495053119023517805528300e-0004L,
    6.184234513953600118335017885706420552487e-0005L,
   -5.331802711697810861017518515816271808286e-0006L,
 };
+
 static long double Q1[] = {     /*  12 bottom coeffs with leading 1.0 hidden */
    9.081506296064882195280178373107623196655e-0001L,
    6.821049531968204097604392183650687642520e-0001L,
    4.067869178233539502315055970743271822838e-0001L,
    1.702332233546316765818144723063881095577e-0001L,

@@ -162,10 +167,11 @@
    3.185620255011299476196039491205159718620e-0004L,
    1.273405072153008775426376193374105840517e-0005L,
    4.753866999959432971956781228148402971454e-0006L,
   -1.002287602111660026053981728549540200683e-0006L,
 };
+
 /*
  * Rational erf(x) = ((float)0.95478588343) + P2(x-1.5)/Q2(x-1.5)
  * on [1.25,1.75]
  */
 static long double C2   = (long double)((float)0.95478588343);

@@ -181,10 +187,11 @@
   -4.289851942513144714600285769022420962418e-0005L,
    8.304719841341952705874781636002085119978e-0005L,
   -1.040460226177309338781902252282849903189e-0005L,
    2.122913331584921470381327583672044434087e-0006L,
 };
+
 static long double Q2[] = {     /*  13 bottom coeffs with leading 1.0 hidden */
    7.448815737306992749168727691042003832150e-0001L,
    7.161813850236008294484744312430122188043e-0001L,
    3.603134756584225766144922727405641236121e-0001L,
    1.955811609133766478080550795194535852653e-0001L,

@@ -196,10 +203,11 @@
    8.664587895570043348530991997272212150316e-0005L,
    1.109201582511752087060167429397033701988e-0005L,
    1.357834375781831062713347000030984364311e-0006L,
    4.957746280594384997273090385060680016451e-0008L,
 };
+
 /*
  * erfc(x) = exp(-x*x)/x * R1(1/x)/S1(1/x) on [1.75, 16/3]
  */
 static long double R1[] = {     /*  14 top coeffs */
    4.630195122654315016370705767621550602948e+0006L,

@@ -215,10 +223,11 @@
    2.839793161868140305907004392890348777338e+0003L,
    2.786687241658423601778258694498655680778e+0002L,
    1.779177837102695602425897452623985786464e+0001L,
    5.641895835477470769043614623819144434731e-0001L,
 };
+
 static long double S1[] = {     /* 15 bottom coeffs with leading 1.0 hidden */
    4.630195122654331529595606896287596843110e+0006L,
    1.780411093345512024324781084220509055058e+0007L,
    3.250113097051800703707108623715776848283e+0007L,
    3.737857099176755050912193712123489115755e+0007L,

@@ -236,11 +245,11 @@
 };
 
 /*
  * erfc(x) = exp(-x*x)/x * R2(1/x)/S2(1/x) on [16/3, 107]
  */
-static long double R2[] = {     /*  15 top coeffs in reverse order!!*/
+static long double R2[] = {     /*  15 top coeffs in reverse order!! */
    2.447288012254302966796326587537136931669e+0005L,
    8.768592567189861896653369912716538739016e+0005L,
    1.552293152581780065761497908005779524953e+0006L,
    1.792075924835942935864231657504259926729e+0006L,
    1.504001463155897344947500222052694835875e+0006L,

@@ -253,10 +262,11 @@
    7.362346487427048068212968889642741734621e+0002L,
    9.980359714211411423007641056580813116207e+0001L,
    9.426910895135379181107191962193485174159e+0000L,
    5.641895835477562869480794515623601280429e-0001L,
 };
+
 static long double S2[] = {     /* 16 coefficients */
    2.447282203601902971246004716790604686880e+0005L,
    1.153009852759385309367759460934808489833e+0006L,
    2.608580649612639131548966265078663384849e+0006L,
    3.766673917346623308850202792390569025740e+0006L,

@@ -272,77 +282,105 @@
    1.773972700887629157006326333696896516769e+0002L,
    1.670876451822586800422009013880457094162e+0001L,
    1.000L,
 };
 
-long double erfl(x)
-long double x;
+long double
+erfl(long double x)
 {
-        long double erfcl(long double),s,y,t;
+        long double erfcl(long double), s, y, t;
 
         if (!finitel(x)) {
-            if (x != x) return x+x;     /* NaN */
-            return copysignl(one,x);    /* return +-1.0 is x=Inf */
+                if (x != x)
+                        return (x + x);         /* NaN */
+
+                return (copysignl(one, x));     /* return +-1.0 is x=Inf */
         }
 
         y = fabsl(x);
+
         if (y <= 0.84375L) {
-            if (y<=tiny) return x+P[0]*x;
-            s = y*y;
-            t = __poly_libmq(s,21,P);
-            return  x+x*t;
+                if (y <= tiny)
+                        return (x + P[0] * x);
+
+                s = y * y;
+                t = __poly_libmq(s, 21, P);
+                return (x + x * t);
         }
-        if (y<=1.25L) {
-            s = y-one;
-            t = C1+__poly_libmq(s,12,P1)/(one+s*__poly_libmq(s,12,Q1));
-            return (signbitl(x))? -t: t;
-        } else if (y<=1.75L) {
-            s = y-onehalf;
-            t = C2+__poly_libmq(s,12,P2)/(one+s*__poly_libmq(s,13,Q2));
-            return (signbitl(x))? -t: t;
+
+        if (y <= 1.25L) {
+                s = y - one;
+                t = C1 + __poly_libmq(s, 12, P1) / (one + s * __poly_libmq(s,
+                    12, Q1));
+                return ((signbitl(x)) ? -t : t);
+        } else if (y <= 1.75L) {
+                s = y - onehalf;
+                t = C2 + __poly_libmq(s, 12, P2) / (one + s * __poly_libmq(s,
+                    13, Q2));
+                return ((signbitl(x)) ? -t : t);
         }
-        if (y<=9.0L) t = erfcl(y); else t = tiny;
-        return (signbitl(x))? t-one: one-t;
+
+        if (y <= 9.0L)
+                t = erfcl(y);
+        else
+                t = tiny;
+
+        return ((signbitl(x)) ? t - one : one - t);
 }
 
-long double erfcl(x)
-long double x;
+long double
+erfcl(long double x)
 {
-        long double erfl(long double),s,y,t;
+        long double s, y, t;
 
         if (!finitel(x)) {
-            if (x != x) return x+x;     /* NaN */
-                                        /* return 2.0 if x= -inf
-                                                  0.0 if x= +inf */
-            if (x<0.0L) return 2.0L; else return 0.0L;
+                if (x != x)
+                        return (x + x);         /* NaN */
+
+                /*
+                 * return 2.0 if x = -inf
+                 *        0.0 if x = +inf
+                 */
+                if (x < 0.0L)
+                        return (2.0L);
+                else
+                        return (0.0L);
         }
 
         if (x <= 0.84375L) {
-            if (x<=0.25) return one-erfl(x);
-            s = x*x;
-            t = half-x;
-            t = t - x*__poly_libmq(s,21,P);
-            return  half+t;
+                if (x <= 0.25)
+                        return (one - erfl(x));
+
+                s = x * x;
+                t = half - x;
+                t = t - x * __poly_libmq(s, 21, P);
+                return (half + t);
         }
-        if (x<=1.25L) {
-            s = x-one;
-            t = one-C1;
-            return t - __poly_libmq(s,12,P1)/(one+s*__poly_libmq(s,12,Q1));
-        } else if (x<=1.75L) {
-            s = x-onehalf;
-            t = one-C2;
-            return t - __poly_libmq(s,12,P2)/(one+s*__poly_libmq(s,13,Q2));
+
+        if (x <= 1.25L) {
+                s = x - one;
+                t = one - C1;
+                return (t - __poly_libmq(s, 12, P1) / (one + s * __poly_libmq(s,
+                    12, Q1)));
+        } else if (x <= 1.75L) {
+                s = x - onehalf;
+                t = one - C2;
+                return (t - __poly_libmq(s, 12, P2) / (one + s * __poly_libmq(s,
+                    13, Q2)));
         }
-        if (x>=107.0L) return nearunfl*nearunfl;                /* underflow */
-        else if (x >= L16_3) {
-            y = __poly_libmq(x,15,R2);
-            t = y/__poly_libmq(x,16,S2);
+
+        if (x >= 107.0L) {
+                return (nearunfl * nearunfl);   /* underflow */
+        } else if (x >= L16_3) {
+                y = __poly_libmq(x, 15, R2);
+                t = y / __poly_libmq(x, 16, S2);
         } else {
-            y = __poly_libmq(x,14,R1);
-            t = y/__poly_libmq(x,15,S1);
+                y = __poly_libmq(x, 14, R1);
+                t = y / __poly_libmq(x, 15, S1);
         }
+
         /* see comment in ../Q/erfl.c */
         y = x;
-        *(int*)&y = 0;
-        t *= expl(-y*y)*expl(-(x-y)*(x+y));
-        return  t;
+        *(int *)&y = 0;
+        t *= expl(-y * y) * expl(-(x - y) * (x + y));
+        return (t);
 }