Print this page
11210 libm should be cstyle(1ONBLD) clean

Split Close
Expand all
Collapse all
          --- old/usr/src/lib/libm/common/LD/__tanl.c
          +++ new/usr/src/lib/libm/common/LD/__tanl.c
↓ open down ↓ 14 lines elided ↑ open up ↑
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24   24   */
       25 +
  25   26  /*
  26   27   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27   28   * Use is subject to license terms.
  28   29   */
  29   30  
  30      -/* INDENT OFF */
       31 +
  31   32  /*
  32   33   * __k_tanl( long double x;  long double y; int k )
  33   34   * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164
  34   35   * Input x is assumed to be bounded by ~pi/4 in magnitude.
  35   36   * Input y is the tail of x.
  36   37   * Input k indicate -- tan if k=0; else -1/tan
  37   38   *
  38   39   * Table look up algorithm
  39   40   *      1. by tan(-x) = -tan(x), need only to consider positive x
  40   41   *      2. if x < 5/32 = [0x3ffc4000, 0] = 0.15625 , then
  41   42   *           if x < 2^-57 (hx < 0x3fc40000 0), set w=x with inexact if x !=  0
  42   43   *           else
  43   44   *              z = x*x;
  44   45   *              w = x + (y+(x*z)*(t1+z*(t2+z*(t3+z*(t4+z*(t5+z*t6))))))
  45   46   *         return (k == 0 ? w : 1/w);
  46   47   *      3. else
  47   48   *              ht = (hx + 0x400)&0x7ffff800    (round x to a break point t)
  48   49   *              lt = 0
  49   50   *              i  = (hy-0x3ffc4000)>>11;       (i<=64)
  50      - *              x' = (x - t)+y                  (|x'| ~<= 2^-7)
       51 + *              x' = (x - t)+y                  (|x'| ~<= 2^-7)
  51   52   *         By
  52   53   *              tan(t+x')
  53   54   *                = (tan(t)+tan(x'))/(1-tan(x')tan(t))
  54   55   *         We have
  55   56   *                           sin(x')+tan(t)*(tan(t)*sin(x'))
  56   57   *                = tan(t) + -------------------------------    for k=0
  57   58   *                              cos(x') - tan(t)*sin(x')
  58   59   *
  59   60   *                           cos(x') - tan(t)*sin(x')
  60   61   *                = - --------------------------------------    for k=1
  61   62   *                     tan(t) + tan(t)*(cos(x')-1) + sin(x')
  62   63   *
  63   64   *
  64      - *         where        tan(t) is from the table,
       65 + *         where        tan(t) is from the table,
  65   66   *                      sin(x') = x + pp1*x^3 + ...+ pp5*x^11
  66   67   *                      cos(x') = 1 + qq1*x^2 + ...+ qq5*x^10
  67   68   */
  68   69  
  69   70  #include "libm.h"
  70   71  
  71   72  #include <sys/isa_defs.h>
  72   73  
  73   74  extern const long double _TBL_tanl_hi[], _TBL_tanl_lo[];
  74      -static const long double
  75      -one     = 1.0,
       75 +static const long double one = 1.0;
       76 +
  76   77  /*
  77   78   * |sin(x) - (x+pp1*x^3+...+ pp5*x^11)| <= 2^-122.32 for |x|<1/64
  78   79   */
  79      -pp1     = -1.666666666666666666666666666586782940810e-0001L,
  80      -pp2     =  8.333333333333333333333003723660929317540e-0003L,
  81      -pp3     = -1.984126984126984076045903483778337804470e-0004L,
  82      -pp4     =  2.755731922361906641319723106210900949413e-0006L,
  83      -pp5     = -2.505198398570947019093998469135012057673e-0008L,
       80 +static const long double
       81 +        pp1 = -1.666666666666666666666666666586782940810e-0001L,
       82 +        pp2 = 8.333333333333333333333003723660929317540e-0003L,
       83 +        pp3 = -1.984126984126984076045903483778337804470e-0004L,
       84 +        pp4 = 2.755731922361906641319723106210900949413e-0006L,
       85 +        pp5 = -2.505198398570947019093998469135012057673e-0008L;
       86 +
  84   87  /*
  85   88   *                   2           10        -123.84
  86   89   * |cos(x) - (1+qq1*x +...+ qq5*x  )| <= 2        for |x|<=1/128
  87   90   */
  88      -qq1     = -4.999999999999999999999999999999378373641e-0001L,
  89      -qq2     =  4.166666666666666666666665478399327703130e-0002L,
  90      -qq3     = -1.388888888888888888058211230618051613494e-0003L,
  91      -qq4     =  2.480158730156105377771585658905303111866e-0005L,
  92      -qq5     = -2.755728099762526325736488376695157008736e-0007L,
       91 +static const long double
       92 +        qq1 = -4.999999999999999999999999999999378373641e-0001L,
       93 +        qq2 = 4.166666666666666666666665478399327703130e-0002L,
       94 +        qq3 = -1.388888888888888888058211230618051613494e-0003L,
       95 +        qq4 = 2.480158730156105377771585658905303111866e-0005L,
       96 +        qq5 = -2.755728099762526325736488376695157008736e-0007L;
       97 +
  93   98  /*
  94   99   * |tan(x) - (x+t1*x^3+...+t6*x^13)|
  95  100   * |------------------------------ | <= 2^-59.73 for |x|<0.15625
  96  101   * |                x              |
  97  102   */
  98      -t1      =  3.333333333333333333333333333333423342490e-0001L,
  99      -t2      =  1.333333333333333333333333333093838744537e-0001L,
 100      -t3      =  5.396825396825396825396827906318682662250e-0002L,
 101      -t4      =  2.186948853615520282185576976994418486911e-0002L,
 102      -t5      =  8.863235529902196573354554519991152936246e-0003L,
 103      -t6      =  3.592128036572480064652191427543994878790e-0003L,
 104      -t7      =  1.455834387051455257856833807581901305474e-0003L,
 105      -t8      =  5.900274409318599857829983256201725587477e-0004L,
 106      -t9      =  2.391291152117265181501116961901122362937e-0004L,
 107      -t10     =  9.691533169382729742394024173194981882375e-0005L,
 108      -t11     =  3.927994733186415603228178184225780859951e-0005L,
 109      -t12     =  1.588300018848323824227640064883334101288e-0005L,
 110      -t13     =  6.916271223396808311166202285131722231723e-0006L;
 111      -/* INDENT ON */
      103 +static const long double
      104 +        t1 = 3.333333333333333333333333333333423342490e-0001L,
      105 +        t2 = 1.333333333333333333333333333093838744537e-0001L,
      106 +        t3 = 5.396825396825396825396827906318682662250e-0002L,
      107 +        t4 = 2.186948853615520282185576976994418486911e-0002L,
      108 +        t5 = 8.863235529902196573354554519991152936246e-0003L,
      109 +        t6 = 3.592128036572480064652191427543994878790e-0003L,
      110 +        t7 = 1.455834387051455257856833807581901305474e-0003L,
      111 +        t8 = 5.900274409318599857829983256201725587477e-0004L,
      112 +        t9 = 2.391291152117265181501116961901122362937e-0004L,
      113 +        t10 = 9.691533169382729742394024173194981882375e-0005L,
      114 +        t11 = 3.927994733186415603228178184225780859951e-0005L,
      115 +        t12 = 1.588300018848323824227640064883334101288e-0005L,
      116 +        t13 = 6.916271223396808311166202285131722231723e-0006L;
      117 +
      118 +
 112  119  long double
 113      -__k_tanl(long double x, long double y, int k) {
      120 +__k_tanl(long double x, long double y, int k)
      121 +{
 114  122          long double a, t, z, w = 0.0, s, c;
 115      -        int *pt = (int *) &t, *px = (int *) &x;
      123 +        int *pt = (int *)&t, *px = (int *)&x;
 116  124          int i, j, hx, ix;
 117  125  
 118  126          t = 1.0;
 119  127  #if defined(__i386) || defined(__amd64)
 120  128          XTOI(px, hx);
 121  129  #else
 122  130          hx = px[0];
 123  131  #endif
 124  132          ix = hx & 0x7fffffff;
      133 +
 125  134          if (ix < 0x3ffc4000) {
 126  135                  if (ix < 0x3fc60000) {
 127      -                        if ((i = (int) x) == 0) /* generate inexact */
      136 +                        if ((i = (int)x) == 0)  /* generate inexact */
 128  137                                  w = x;
 129  138                  } else {
 130  139                          z = x * x;
 131      -                        if (ix < 0x3ff30000)    /* 2**-12 */
      140 +
      141 +                        if (ix < 0x3ff30000) {  /* 2**-12 */
 132  142                                  t = z * (t1 + z * (t2 + z * (t3 + z * t4)));
 133      -                        else
 134      -                                t = z * (t1 + z * (t2 + z * (t3 + z * (t4 +
 135      -                                        z * (t5 + z * (t6 + z * (t7 + z *
 136      -                                        (t8 + z * (t9 + z * (t10 + z * (t11 +
 137      -                                        z * (t12 + z * t13))))))))))));
      143 +                        } else {
      144 +                                t = z * (t1 + z * (t2 + z * (t3 + z * (t4 + z *
      145 +                                    (t5 + z * (t6 + z * (t7 + z * (t8 + z *
      146 +                                    (t9 + z * (t10 + z * (t11 + z * (t12 + z *
      147 +                                    t13))))))))))));
      148 +                        }
      149 +
 138  150                          t = y + x * t;
 139  151                          w = x + t;
 140  152                  }
      153 +
 141  154                  return (k == 0 ? w : -one / w);
 142  155          }
      156 +
 143  157          j = (ix + 0x400) & 0x7ffff800;
 144  158          i = (j - 0x3ffc4000) >> 11;
 145  159  #if defined(__i386) || defined(__amd64)
 146  160          ITOX(j, pt);
 147  161  #else
 148  162          pt[0] = j;
 149  163  #endif
      164 +
 150  165          if (hx > 0)
 151  166                  x = y - (t - x);
 152  167          else
 153  168                  x = (-y) - (t + x);
      169 +
 154  170          a = _TBL_tanl_hi[i];
 155  171          z = x * x;
 156  172          /* cos(x)-1 */
 157  173          t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
 158  174          /* sin(x) */
 159      -        s = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z *
 160      -                pp5)))));
      175 +        s = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z * pp5)))));
      176 +
 161  177          if (k == 0) {
 162  178                  w = a * s;
 163  179                  t = _TBL_tanl_lo[i] + (s + a * w) / (one - (w - t));
 164  180                  return (hx < 0 ? -a - t : a + t);
 165  181          } else {
 166  182                  w = s + a * t;
 167  183                  c = w + _TBL_tanl_lo[i];
 168  184                  z = (one - (a * s - t));
 169  185                  return (hx >= 0 ? z / (-a - c) : z / (a + c));
 170  186          }
 171  187  }
    
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX