Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/LD/__tanl.c
+++ new/usr/src/lib/libm/common/LD/__tanl.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 -/* INDENT OFF */
31 +
31 32 /*
32 33 * __k_tanl( long double x; long double y; int k )
33 34 * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164
34 35 * Input x is assumed to be bounded by ~pi/4 in magnitude.
35 36 * Input y is the tail of x.
36 37 * Input k indicate -- tan if k=0; else -1/tan
37 38 *
38 39 * Table look up algorithm
39 40 * 1. by tan(-x) = -tan(x), need only to consider positive x
40 41 * 2. if x < 5/32 = [0x3ffc4000, 0] = 0.15625 , then
41 42 * if x < 2^-57 (hx < 0x3fc40000 0), set w=x with inexact if x != 0
42 43 * else
43 44 * z = x*x;
44 45 * w = x + (y+(x*z)*(t1+z*(t2+z*(t3+z*(t4+z*(t5+z*t6))))))
45 46 * return (k == 0 ? w : 1/w);
46 47 * 3. else
47 48 * ht = (hx + 0x400)&0x7ffff800 (round x to a break point t)
48 49 * lt = 0
49 50 * i = (hy-0x3ffc4000)>>11; (i<=64)
50 - * x' = (x - t)+y (|x'| ~<= 2^-7)
51 + * x' = (x - t)+y (|x'| ~<= 2^-7)
51 52 * By
52 53 * tan(t+x')
53 54 * = (tan(t)+tan(x'))/(1-tan(x')tan(t))
54 55 * We have
55 56 * sin(x')+tan(t)*(tan(t)*sin(x'))
56 57 * = tan(t) + ------------------------------- for k=0
57 58 * cos(x') - tan(t)*sin(x')
58 59 *
59 60 * cos(x') - tan(t)*sin(x')
60 61 * = - -------------------------------------- for k=1
61 62 * tan(t) + tan(t)*(cos(x')-1) + sin(x')
62 63 *
63 64 *
64 - * where tan(t) is from the table,
65 + * where tan(t) is from the table,
65 66 * sin(x') = x + pp1*x^3 + ...+ pp5*x^11
66 67 * cos(x') = 1 + qq1*x^2 + ...+ qq5*x^10
67 68 */
68 69
69 70 #include "libm.h"
70 71
71 72 #include <sys/isa_defs.h>
72 73
73 74 extern const long double _TBL_tanl_hi[], _TBL_tanl_lo[];
74 -static const long double
75 -one = 1.0,
75 +static const long double one = 1.0;
76 +
76 77 /*
77 78 * |sin(x) - (x+pp1*x^3+...+ pp5*x^11)| <= 2^-122.32 for |x|<1/64
78 79 */
79 -pp1 = -1.666666666666666666666666666586782940810e-0001L,
80 -pp2 = 8.333333333333333333333003723660929317540e-0003L,
81 -pp3 = -1.984126984126984076045903483778337804470e-0004L,
82 -pp4 = 2.755731922361906641319723106210900949413e-0006L,
83 -pp5 = -2.505198398570947019093998469135012057673e-0008L,
80 +static const long double
81 + pp1 = -1.666666666666666666666666666586782940810e-0001L,
82 + pp2 = 8.333333333333333333333003723660929317540e-0003L,
83 + pp3 = -1.984126984126984076045903483778337804470e-0004L,
84 + pp4 = 2.755731922361906641319723106210900949413e-0006L,
85 + pp5 = -2.505198398570947019093998469135012057673e-0008L;
86 +
84 87 /*
85 88 * 2 10 -123.84
86 89 * |cos(x) - (1+qq1*x +...+ qq5*x )| <= 2 for |x|<=1/128
87 90 */
88 -qq1 = -4.999999999999999999999999999999378373641e-0001L,
89 -qq2 = 4.166666666666666666666665478399327703130e-0002L,
90 -qq3 = -1.388888888888888888058211230618051613494e-0003L,
91 -qq4 = 2.480158730156105377771585658905303111866e-0005L,
92 -qq5 = -2.755728099762526325736488376695157008736e-0007L,
91 +static const long double
92 + qq1 = -4.999999999999999999999999999999378373641e-0001L,
93 + qq2 = 4.166666666666666666666665478399327703130e-0002L,
94 + qq3 = -1.388888888888888888058211230618051613494e-0003L,
95 + qq4 = 2.480158730156105377771585658905303111866e-0005L,
96 + qq5 = -2.755728099762526325736488376695157008736e-0007L;
97 +
93 98 /*
94 99 * |tan(x) - (x+t1*x^3+...+t6*x^13)|
95 100 * |------------------------------ | <= 2^-59.73 for |x|<0.15625
96 101 * | x |
97 102 */
98 -t1 = 3.333333333333333333333333333333423342490e-0001L,
99 -t2 = 1.333333333333333333333333333093838744537e-0001L,
100 -t3 = 5.396825396825396825396827906318682662250e-0002L,
101 -t4 = 2.186948853615520282185576976994418486911e-0002L,
102 -t5 = 8.863235529902196573354554519991152936246e-0003L,
103 -t6 = 3.592128036572480064652191427543994878790e-0003L,
104 -t7 = 1.455834387051455257856833807581901305474e-0003L,
105 -t8 = 5.900274409318599857829983256201725587477e-0004L,
106 -t9 = 2.391291152117265181501116961901122362937e-0004L,
107 -t10 = 9.691533169382729742394024173194981882375e-0005L,
108 -t11 = 3.927994733186415603228178184225780859951e-0005L,
109 -t12 = 1.588300018848323824227640064883334101288e-0005L,
110 -t13 = 6.916271223396808311166202285131722231723e-0006L;
111 -/* INDENT ON */
103 +static const long double
104 + t1 = 3.333333333333333333333333333333423342490e-0001L,
105 + t2 = 1.333333333333333333333333333093838744537e-0001L,
106 + t3 = 5.396825396825396825396827906318682662250e-0002L,
107 + t4 = 2.186948853615520282185576976994418486911e-0002L,
108 + t5 = 8.863235529902196573354554519991152936246e-0003L,
109 + t6 = 3.592128036572480064652191427543994878790e-0003L,
110 + t7 = 1.455834387051455257856833807581901305474e-0003L,
111 + t8 = 5.900274409318599857829983256201725587477e-0004L,
112 + t9 = 2.391291152117265181501116961901122362937e-0004L,
113 + t10 = 9.691533169382729742394024173194981882375e-0005L,
114 + t11 = 3.927994733186415603228178184225780859951e-0005L,
115 + t12 = 1.588300018848323824227640064883334101288e-0005L,
116 + t13 = 6.916271223396808311166202285131722231723e-0006L;
117 +
118 +
112 119 long double
113 -__k_tanl(long double x, long double y, int k) {
120 +__k_tanl(long double x, long double y, int k)
121 +{
114 122 long double a, t, z, w = 0.0, s, c;
115 - int *pt = (int *) &t, *px = (int *) &x;
123 + int *pt = (int *)&t, *px = (int *)&x;
116 124 int i, j, hx, ix;
117 125
118 126 t = 1.0;
119 127 #if defined(__i386) || defined(__amd64)
120 128 XTOI(px, hx);
121 129 #else
122 130 hx = px[0];
123 131 #endif
124 132 ix = hx & 0x7fffffff;
133 +
125 134 if (ix < 0x3ffc4000) {
126 135 if (ix < 0x3fc60000) {
127 - if ((i = (int) x) == 0) /* generate inexact */
136 + if ((i = (int)x) == 0) /* generate inexact */
128 137 w = x;
129 138 } else {
130 139 z = x * x;
131 - if (ix < 0x3ff30000) /* 2**-12 */
140 +
141 + if (ix < 0x3ff30000) { /* 2**-12 */
132 142 t = z * (t1 + z * (t2 + z * (t3 + z * t4)));
133 - else
134 - t = z * (t1 + z * (t2 + z * (t3 + z * (t4 +
135 - z * (t5 + z * (t6 + z * (t7 + z *
136 - (t8 + z * (t9 + z * (t10 + z * (t11 +
137 - z * (t12 + z * t13))))))))))));
143 + } else {
144 + t = z * (t1 + z * (t2 + z * (t3 + z * (t4 + z *
145 + (t5 + z * (t6 + z * (t7 + z * (t8 + z *
146 + (t9 + z * (t10 + z * (t11 + z * (t12 + z *
147 + t13))))))))))));
148 + }
149 +
138 150 t = y + x * t;
139 151 w = x + t;
140 152 }
153 +
141 154 return (k == 0 ? w : -one / w);
142 155 }
156 +
143 157 j = (ix + 0x400) & 0x7ffff800;
144 158 i = (j - 0x3ffc4000) >> 11;
145 159 #if defined(__i386) || defined(__amd64)
146 160 ITOX(j, pt);
147 161 #else
148 162 pt[0] = j;
149 163 #endif
164 +
150 165 if (hx > 0)
151 166 x = y - (t - x);
152 167 else
153 168 x = (-y) - (t + x);
169 +
154 170 a = _TBL_tanl_hi[i];
155 171 z = x * x;
156 172 /* cos(x)-1 */
157 173 t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
158 174 /* sin(x) */
159 - s = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z *
160 - pp5)))));
175 + s = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z * pp5)))));
176 +
161 177 if (k == 0) {
162 178 w = a * s;
163 179 t = _TBL_tanl_lo[i] + (s + a * w) / (one - (w - t));
164 180 return (hx < 0 ? -a - t : a + t);
165 181 } else {
166 182 w = s + a * t;
167 183 c = w + _TBL_tanl_lo[i];
168 184 z = (one - (a * s - t));
169 185 return (hx >= 0 ? z / (-a - c) : z / (a + c));
170 186 }
171 187 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX