Print this page
11210 libm should be cstyle(1ONBLD) clean

Split Close
Expand all
Collapse all
          --- old/usr/src/lib/libm/common/LD/__sinl.c
          +++ new/usr/src/lib/libm/common/LD/__sinl.c
↓ open down ↓ 14 lines elided ↑ open up ↑
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24   24   */
       25 +
  25   26  /*
  26   27   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27   28   * Use is subject to license terms.
  28   29   */
  29   30  
  30      -/* INDENT OFF */
       31 +
  31   32  /*
  32   33   * __k_sinl( long double x;  long double y )
  33   34   * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.785398164
  34   35   * Input x is assumed to be bounded by ~pi/4 in magnitude.
  35   36   * Input y is the tail of x.
  36   37   *
  37   38   * Table look up algorithm
  38   39   *      1. by sin(-x) = -sin(x), need only to consider positive x
  39   40   *      2. if x < 25/128 = [0x3ffc9000,0,0,0] = 0.1953125 , then
  40   41   *           if x < 2^-57 (hx < 0x3fc60000,0,0,0), return x (inexact if x !=  0)
  41   42   *           z = x*x;
  42   43   *           if x <= 1/64 = 2**-6
  43   44   *              sin(x) = x + (y+(x*z)*(p1 + z*p2))
  44   45   *           else
  45   46   *              sin(x) = x + (y+(x*z)*(p1 + z*(p2 + z*(p3 + z*p4))))
  46   47   *      3. else
  47   48   *              ht = (hx + 0x400)&0x7ffff800    (round x to a break point t)
  48   49   *              lt = 0
  49   50   *              i  = (hy-0x3ffc4000)>>11;       (i<=64)
  50      - *              x' = (x - t)+y                  (|x'| ~<= 2^-7
       51 + *              x' = (x - t)+y                  (|x'| ~<= 2^-7
  51   52   *         By
  52   53   *              sin(t+x')
  53   54   *                = sin(t)cos(x')+cos(t)sin(x')
  54   55   *                = sin(t)(1+z*(qq1+z*qq2))+[cos(t)]*x*(1+z*(pp1+z*pp2))
  55   56   *                = sin(t) + [sin(t)]*(z*(qq1+z*qq2))+
  56   57   *                              [cos(t)]*x*(1+z*(pp1+z*pp2))
  57   58   *
  58   59   *         Thus,
  59   60   *              let a= _TBL_sin_hi[i], b = _TBL_sin_lo[i], c= _TBL_cos_hi[i],
  60   61   *              x = (x-t)+y
  61   62   *              z = x*x;
  62   63   *              sin(t+x) = a+(b+ ((c*x)*(1+z*(pp1+z*pp2))+a*(z*(qq1+z*qq2)))
  63   64   */
  64   65  
  65   66  #include "libm.h"
  66   67  
  67   68  #include <sys/isa_defs.h>
  68   69  
  69   70  extern const long double _TBL_sinl_hi[], _TBL_sinl_lo[], _TBL_cosl_hi[];
  70      -static const long double
  71      -one     = 1.0,
       71 +static const long double one = 1.0;
       72 +
  72   73  /*
  73   74   * |sin(x) - (x+pp1*x^3+...+ pp5*x^11)| <= 2^-122.32 for |x|<1/64
  74   75   */
  75      -pp1     = -1.666666666666666666666666666586782940810e-0001L,
  76      -pp2     =  8.333333333333333333333003723660929317540e-0003L,
  77      -pp3     = -1.984126984126984076045903483778337804470e-0004L,
  78      -pp4     =  2.755731922361906641319723106210900949413e-0006L,
  79      -pp5     = -2.505198398570947019093998469135012057673e-0008L,
       76 +static const long double
       77 +        pp1 = -1.666666666666666666666666666586782940810e-0001L,
       78 +        pp2 = 8.333333333333333333333003723660929317540e-0003L,
       79 +        pp3 = -1.984126984126984076045903483778337804470e-0004L,
       80 +        pp4 = 2.755731922361906641319723106210900949413e-0006L,
       81 +        pp5 = -2.505198398570947019093998469135012057673e-0008L;
       82 +
  80   83  /*
  81   84   * |(sin(x) - (x+p1*x^3+...+p8*x^17)|
  82   85   * |------------------------------- | <= 2^-116.17 for |x|<0.1953125
  83   86   * |                 x              |
  84   87   */
  85      -p1      = -1.666666666666666666666666666666211262297e-0001L,
  86      -p2      =  8.333333333333333333333333301497876908541e-0003L,
  87      -p3      = -1.984126984126984126984041302881180621922e-0004L,
  88      -p4      =  2.755731922398589064100587351307269621093e-0006L,
  89      -p5      = -2.505210838544163129378906953765595393873e-0008L,
  90      -p6      =  1.605904383643244375050998243778534074273e-0010L,
  91      -p7      = -7.647162722800685516901456114270824622699e-0013L,
  92      -p8      =  2.810046428661902961725428841068844462603e-0015L,
       88 +static const long double
       89 +        p1 = -1.666666666666666666666666666666211262297e-0001L,
       90 +        p2 = 8.333333333333333333333333301497876908541e-0003L,
       91 +        p3 = -1.984126984126984126984041302881180621922e-0004L,
       92 +        p4 = 2.755731922398589064100587351307269621093e-0006L,
       93 +        p5 = -2.505210838544163129378906953765595393873e-0008L,
       94 +        p6 = 1.605904383643244375050998243778534074273e-0010L,
       95 +        p7 = -7.647162722800685516901456114270824622699e-0013L,
       96 +        p8 = 2.810046428661902961725428841068844462603e-0015L;
       97 +
  93   98  /*
  94   99   *                   2           10        -123.84
  95  100   * |cos(x) - (1+qq1*x +...+ qq5*x  )| <= 2        for |x|<=1/128
  96  101   */
  97      -qq1     = -4.999999999999999999999999999999378373641e-0001L,
  98      -qq2     =  4.166666666666666666666665478399327703130e-0002L,
  99      -qq3     = -1.388888888888888888058211230618051613494e-0003L,
 100      -qq4     =  2.480158730156105377771585658905303111866e-0005L,
 101      -qq5     = -2.755728099762526325736488376695157008736e-0007L;
 102      -/* INDENT ON */
      102 +static const long double
      103 +        qq1 = -4.999999999999999999999999999999378373641e-0001L,
      104 +        qq2 = 4.166666666666666666666665478399327703130e-0002L,
      105 +        qq3 = -1.388888888888888888058211230618051613494e-0003L,
      106 +        qq4 = 2.480158730156105377771585658905303111866e-0005L,
      107 +        qq5 = -2.755728099762526325736488376695157008736e-0007L;
      108 +
      109 +
 103  110  long double
 104      -__k_sinl(long double x, long double y) {
      111 +__k_sinl(long double x, long double y)
      112 +{
 105  113          long double a, t, z, w;
 106      -        int *pt = (int *) &t, *px = (int *) &x;
      114 +        int *pt = (int *)&t, *px = (int *)&x;
 107  115          int i, j, hx, ix;
 108  116  
 109  117          t = 1.0L;
 110  118  #if defined(__i386) || defined(__amd64)
 111  119          XTOI(px, hx);
 112  120  #else
 113  121          hx = px[0];
 114  122  #endif
 115  123          ix = hx & 0x7fffffff;
      124 +
 116  125          if (ix < 0x3ffc9000) {
 117  126                  if (ix < 0x3fc60000)
 118      -                        if (((int) x) == 0)
 119      -                                return (x);     /* generate inexact */
      127 +                        if (((int)x) == 0)
      128 +                                return (x);
      129 +
      130 +                /* generate inexact */
 120  131                  z = x * x;
 121      -                t = z * (p1 + z * (p2 + z * (p3 + z * (p4 + z * (p5 + z *
 122      -                        (p6 + z * (p7 + z * p8)))))));
      132 +                t = z * (p1 + z * (p2 + z * (p3 + z * (p4 + z * (p5 + z * (p6 +
      133 +                    z * (p7 + z * p8)))))));
 123  134                  t = y + x * t;
 124  135                  return (x + t);
 125  136          }
      137 +
 126  138          j = (ix + 0x400) & 0x7ffff800;
 127  139          i = (j - 0x3ffc4000) >> 11;
 128  140  #if defined(__i386) || defined(__amd64)
 129  141          ITOX(j, pt);
 130  142  #else
 131  143          pt[0] = j;
 132  144  #endif
      145 +
 133  146          if (hx > 0)
 134  147                  x = y - (t - x);
 135  148          else
 136  149                  x = (-y) - (t + x);
      150 +
 137  151          a = _TBL_sinl_hi[i];
 138  152          z = x * x;
 139  153          t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
 140      -        w = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z *
 141      -                pp5)))));
      154 +        w = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z * pp5)))));
 142  155          t = _TBL_cosl_hi[i] * w + a * t;
 143  156          t += _TBL_sinl_lo[i];
      157 +
 144  158          if (hx < 0)
 145  159                  return (-a - t);
 146  160          else
 147  161                  return (a + t);
 148  162  }
    
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX