1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24  */
  25 
  26 /*
  27  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  28  * Use is subject to license terms.
  29  */
  30 
  31 
  32 /*
  33  * __k_sinl( long double x;  long double y )
  34  * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.785398164
  35  * Input x is assumed to be bounded by ~pi/4 in magnitude.
  36  * Input y is the tail of x.
  37  *
  38  * Table look up algorithm
  39  *      1. by sin(-x) = -sin(x), need only to consider positive x
  40  *      2. if x < 25/128 = [0x3ffc9000,0,0,0] = 0.1953125 , then
  41  *           if x < 2^-57 (hx < 0x3fc60000,0,0,0), return x (inexact if x !=  0)
  42  *           z = x*x;
  43  *           if x <= 1/64 = 2**-6
  44  *              sin(x) = x + (y+(x*z)*(p1 + z*p2))
  45  *           else
  46  *              sin(x) = x + (y+(x*z)*(p1 + z*(p2 + z*(p3 + z*p4))))
  47  *      3. else
  48  *              ht = (hx + 0x400)&0x7ffff800        (round x to a break point t)
  49  *              lt = 0
  50  *              i  = (hy-0x3ffc4000)>>11; (i<=64)
  51  *              x' = (x - t)+y                  (|x'| ~<= 2^-7
  52  *         By
  53  *              sin(t+x')
  54  *                = sin(t)cos(x')+cos(t)sin(x')
  55  *                = sin(t)(1+z*(qq1+z*qq2))+[cos(t)]*x*(1+z*(pp1+z*pp2))
  56  *                = sin(t) + [sin(t)]*(z*(qq1+z*qq2))+
  57  *                              [cos(t)]*x*(1+z*(pp1+z*pp2))
  58  *
  59  *         Thus,
  60  *              let a= _TBL_sin_hi[i], b = _TBL_sin_lo[i], c= _TBL_cos_hi[i],
  61  *              x = (x-t)+y
  62  *              z = x*x;
  63  *              sin(t+x) = a+(b+ ((c*x)*(1+z*(pp1+z*pp2))+a*(z*(qq1+z*qq2)))
  64  */
  65 
  66 #include "libm.h"
  67 
  68 #include <sys/isa_defs.h>
  69 
  70 extern const long double _TBL_sinl_hi[], _TBL_sinl_lo[], _TBL_cosl_hi[];
  71 static const long double one = 1.0;
  72 
  73 /*
  74  * |sin(x) - (x+pp1*x^3+...+ pp5*x^11)| <= 2^-122.32 for |x|<1/64
  75  */
  76 static const long double
  77         pp1 = -1.666666666666666666666666666586782940810e-0001L,
  78         pp2 = 8.333333333333333333333003723660929317540e-0003L,
  79         pp3 = -1.984126984126984076045903483778337804470e-0004L,
  80         pp4 = 2.755731922361906641319723106210900949413e-0006L,
  81         pp5 = -2.505198398570947019093998469135012057673e-0008L;
  82 
  83 /*
  84  * |(sin(x) - (x+p1*x^3+...+p8*x^17)|
  85  * |------------------------------- | <= 2^-116.17 for |x|<0.1953125
  86  * |                 x              |
  87  */
  88 static const long double
  89         p1 = -1.666666666666666666666666666666211262297e-0001L,
  90         p2 = 8.333333333333333333333333301497876908541e-0003L,
  91         p3 = -1.984126984126984126984041302881180621922e-0004L,
  92         p4 = 2.755731922398589064100587351307269621093e-0006L,
  93         p5 = -2.505210838544163129378906953765595393873e-0008L,
  94         p6 = 1.605904383643244375050998243778534074273e-0010L,
  95         p7 = -7.647162722800685516901456114270824622699e-0013L,
  96         p8 = 2.810046428661902961725428841068844462603e-0015L;
  97 
  98 /*
  99  *                   2           10        -123.84
 100  * |cos(x) - (1+qq1*x +...+ qq5*x  )| <= 2        for |x|<=1/128
 101  */
 102 static const long double
 103         qq1 = -4.999999999999999999999999999999378373641e-0001L,
 104         qq2 = 4.166666666666666666666665478399327703130e-0002L,
 105         qq3 = -1.388888888888888888058211230618051613494e-0003L,
 106         qq4 = 2.480158730156105377771585658905303111866e-0005L,
 107         qq5 = -2.755728099762526325736488376695157008736e-0007L;
 108 
 109 
 110 long double
 111 __k_sinl(long double x, long double y)
 112 {
 113         long double a, t, z, w;
 114         int *pt = (int *)&t, *px = (int *)&x;
 115         int i, j, hx, ix;
 116 
 117         t = 1.0L;
 118 #if defined(__i386) || defined(__amd64)
 119         XTOI(px, hx);
 120 #else
 121         hx = px[0];
 122 #endif
 123         ix = hx & 0x7fffffff;
 124 
 125         if (ix < 0x3ffc9000) {
 126                 if (ix < 0x3fc60000)
 127                         if (((int)x) == 0)
 128                                 return (x);
 129 
 130                 /* generate inexact */
 131                 z = x * x;
 132                 t = z * (p1 + z * (p2 + z * (p3 + z * (p4 + z * (p5 + z * (p6 +
 133                     z * (p7 + z * p8)))))));
 134                 t = y + x * t;
 135                 return (x + t);
 136         }
 137 
 138         j = (ix + 0x400) & 0x7ffff800;
 139         i = (j - 0x3ffc4000) >> 11;
 140 #if defined(__i386) || defined(__amd64)
 141         ITOX(j, pt);
 142 #else
 143         pt[0] = j;
 144 #endif
 145 
 146         if (hx > 0)
 147                 x = y - (t - x);
 148         else
 149                 x = (-y) - (t + x);
 150 
 151         a = _TBL_sinl_hi[i];
 152         z = x * x;
 153         t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
 154         w = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z * pp5)))));
 155         t = _TBL_cosl_hi[i] * w + a * t;
 156         t += _TBL_sinl_lo[i];
 157 
 158         if (hx < 0)
 159                 return (-a - t);
 160         else
 161                 return (a + t);
 162 }