Print this page
11210 libm should be cstyle(1ONBLD) clean

@@ -20,10 +20,11 @@
  */
 
 /*
  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  */
+
 /*
  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  * Use is subject to license terms.
  */
 

@@ -54,72 +55,80 @@
 static long double neg(long double, int *);
 static long double poly(long double, const long double *, int);
 static long double polytail(long double);
 static long double primary(long double);
 
-static const long double
-c0 =     0.0L,
-ch =     0.5L,
-c1 =     1.0L,
-c2 =     2.0L,
-c3 =     3.0L,
-c4 =     4.0L,
-c5 =     5.0L,
-c6 =     6.0L,
-pi =     3.1415926535897932384626433832795028841971L,
-tiny =   1.0e-40L;
+static const long double c0 = 0.0L,
+        ch = 0.5L,
+        c1 = 1.0L,
+        c2 = 2.0L,
+        c3 = 3.0L,
+        c4 = 4.0L,
+        c5 = 5.0L,
+        c6 = 6.0L,
+        pi = 3.1415926535897932384626433832795028841971L,
+        tiny = 1.0e-40L;
 
 long double
-__k_lgammal(long double x, int *signgamlp) {
+__k_lgammal(long double x, int *signgamlp)
+{
         long double t, y;
         int i;
 
         /* purge off +-inf, NaN and negative arguments */
         if (!finitel(x))
-                return (x*x);
+                return (x * x);
+
         *signgamlp = 1;
+
         if (signbitl(x))
                 return (neg(x, signgamlp));
 
         /* for x < 8.0 */
         if (x < 8.0L) {
             y = anintl(x);
-            i = (int) y;
+                i = (int)y;
+
             switch (i) {
             case 0:
+
                 if (x < 1.0e-40L)
                         return (-logl(x));
                 else
-                        return (primary(x)-log1pl(x))-logl(x);
+                                return ((primary(x) - log1pl(x)) - logl(x));
+
             case 1:
-                return (primary(x-y)-logl(x));
+                        return (primary(x - y) - logl(x));
             case 2:
-                return (primary(x-y));
+                        return (primary(x - y));
             case 3:
-                return (primary(x-y)+logl(x-c1));
+                        return (primary(x - y) + logl(x - c1));
             case 4:
-                return (primary(x-y)+logl((x-c1)*(x-c2)));
+                        return (primary(x - y) + logl((x - c1) * (x - c2)));
             case 5:
-                return (primary(x-y)+logl((x-c1)*(x-c2)*(x-c3)));
+                        return (primary(x - y) + logl((x - c1) * (x - c2) * (x -
+                            c3)));
             case 6:
-                return (primary(x-y)+logl((x-c1)*(x-c2)*(x-c3)*(x-c4)));
+                        return (primary(x - y) + logl((x - c1) * (x - c2) * (x -
+                            c3) * (x - c4)));
             case 7:
-                return (primary(x-y)+logl((x-c1)*(x-c2)*(x-c3)*(x-c4)*(x-c5)));
+                        return (primary(x - y) + logl((x - c1) * (x - c2) * (x -
+                            c3) * (x - c4) * (x - c5)));
             case 8:
-                return primary(x-y)+
-                        logl((x-c1)*(x-c2)*(x-c3)*(x-c4)*(x-c5)*(x-c6));
+                        return (primary(x - y) + logl((x - c1) * (x - c2) * (x -
+                            c3) * (x - c4) * (x - c5) * (x - c6)));
             }
         }
 
         /* 8.0 <= x < 1.0e40 */
         if (x < 1.0e40L) {
             t = logl(x);
-            return (x*(t-c1)-(ch*t-polytail(c1/x)));
+                return (x * (t - c1) - (ch * t - polytail(c1 / x)));
         }
 
         /* 1.0e40 <= x <= inf */
-        return (x*(logl(x)-c1));
+        return (x * (logl(x) - c1));
 }
 
 static const long double an1[] = {              /* 20 terms */
         -0.0772156649015328606065120900824024309741L,
         3.224670334241132182362075833230130289059e-0001L,

@@ -300,34 +309,50 @@
    2.961350193868935325526962209019387821584e-0008L,
   -2.834602215195368130104649234505033159842e-0009L,
 };
 
 static long double
-primary(long double s) {        /* assume |s|<=0.5 */
+primary(long double s)                  /* assume |s|<=0.5 */
+{
         int i;
 
-        i = (int) (8.0L * (s + 0.5L));
+        i = (int)(8.0L * (s + 0.5L));
+
         switch (i) {
-        case 0: return ch*s+s*poly(s, an4, 21);
-        case 1: return ch*s+s*poly(s, an3, 20);
-        case 2: return ch*s+s*poly(s, an2, 20);
-        case 3: return ch*s+s*poly(s, an1, 20);
-        case 4: return ch*s+s*poly(s, ap1, 19);
-        case 5: return ch*s+s*poly(s, ap2, 19);
-        case 6: return ch*s+s*poly(s, ap3, 19);
-        case 7: return ch*s+s*poly(s, ap4, 19);
+        case 0:
+                return (ch * s + s * poly(s, an4, 21));
+        case 1:
+                return (ch * s + s * poly(s, an3, 20));
+        case 2:
+                return (ch * s + s * poly(s, an2, 20));
+        case 3:
+                return (ch * s + s * poly(s, an1, 20));
+        case 4:
+                return (ch * s + s * poly(s, ap1, 19));
+        case 5:
+                return (ch * s + s * poly(s, ap2, 19));
+        case 6:
+                return (ch * s + s * poly(s, ap3, 19));
+        case 7:
+                return (ch * s + s * poly(s, ap4, 19));
         }
+
         /* NOTREACHED */
     return (0.0L);
 }
 
 static long double
-poly(long double s, const long double *p, int n) {
+poly(long double s, const long double *p, int n)
+{
         long double y;
         int i;
-        y = p[n-1];
-        for (i = n-2; i >= 0; i--) y = p[i]+s*y;
+
+        y = p[n - 1];
+
+        for (i = n - 2; i >= 0; i--)
+                y = p[i] + s * y;
+
         return (y);
 }
 
 static const long double pt[] = {
    9.189385332046727417803297364056176804663e-0001L,

@@ -350,23 +375,30 @@
    7.316526934569686459641438882340322673357e+0007L,
   -3.806450279064900548836571789284896711473e+0008L,
 };
 
 static long double
-polytail(long double s) {
+polytail(long double s)
+{
         long double t, z;
         int i;
-        z = s*s;
+
+        z = s * s;
         t = pt[18];
-        for (i = 17; i >= 1; i--) t = pt[i]+z*t;
-        return (pt[0]+s*t);
+
+        for (i = 17; i >= 1; i--)
+                t = pt[i] + z * t;
+
+        return (pt[0] + s * t);
 }
 
 static long double
-neg(long double z, int *signgamlp) {
+neg(long double z, int *signgamlp)
+{
         long double t, p;
 
+        /* BEGIN CSTYLED */
         /*
          * written by K.C. Ng,  Feb 2, 1989.
          *
          * Since
          *              -z*G(-z)*G(z) = pi/sin(pi*z),

@@ -384,18 +416,24 @@
          *                  return -log(z);
          *              else
          *                  return log(pi/(t*z))-lgamma(z);
          *
          */
+        /* END CSTYLED */
 
         t = sinpil(z);                  /* t := sin(pi*z) */
+
         if (t == c0)                    /* return   1.0/0.0 =  +INF */
-            return (c1/c0);
+                return (c1 / c0);
 
         z = -z;
+
         if (z <= tiny)
             p = -logl(z);
         else
-                p = logl(pi/(fabsl(t)*z)) - __k_lgammal(z, signgamlp);
-        if (t < c0) *signgamlp = -1;
+                p = logl(pi / (fabsl(t) * z)) - __k_lgammal(z, signgamlp);
+
+        if (t < c0)
+                *signgamlp = -1;
+
         return (p);
 }