Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/C/sincospi.c
+++ new/usr/src/lib/libm/common/C/sincospi.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 -/* INDENT OFF */
31 31 /*
32 32 * void sincospi(double x, double *s, double *c)
33 33 * *s = sin(pi*x); *c = cos(pi*x);
34 34 *
35 35 * Algorithm, 10/17/2002, K.C. Ng
36 36 * ------------------------------
37 37 * Let y = |4x|, z = floor(y), and n = (int)(z mod 8.0) (displayed in binary).
38 38 * 1. If y == z, then x is a multiple of pi/4. Return the following values:
39 39 * ---------------------------------------------------
40 40 * n x mod 2 sin(x*pi) cos(x*pi) tan(x*pi)
41 41 * ---------------------------------------------------
42 42 * 000 0.00 +0 ___ +1 ___ +0
43 43 * 001 0.25 +\/0.5 +\/0.5 +1
44 44 * 010 0.50 +1 ___ +0 ___ +inf
45 45 * 011 0.75 +\/0.5 -\/0.5 -1
46 46 * 100 1.00 -0 ___ -1 ___ +0
47 47 * 101 1.25 -\/0.5 -\/0.5 +1
48 48 * 110 1.50 -1 ___ -0 ___ +inf
49 49 * 111 1.75 -\/0.5 +\/0.5 -1
50 50 * ---------------------------------------------------
51 51 * 2. Otherwise,
52 52 * ---------------------------------------------------
53 53 * n t sin(x*pi) cos(x*pi) tan(x*pi)
54 54 * ---------------------------------------------------
55 55 * 000 (y-z)/4 sinpi(t) cospi(t) tanpi(t)
56 56 * 001 (z+1-y)/4 cospi(t) sinpi(t) 1/tanpi(t)
57 57 * 010 (y-z)/4 cospi(t) -sinpi(t) -1/tanpi(t)
58 58 * 011 (z+1-y)/4 sinpi(t) -cospi(t) -tanpi(t)
59 59 * 100 (y-z)/4 -sinpi(t) -cospi(t) tanpi(t)
60 60 * 101 (z+1-y)/4 -cospi(t) -sinpi(t) 1/tanpi(t)
61 61 * 110 (y-z)/4 -cospi(t) sinpi(t) -1/tanpi(t)
62 62 * 111 (z+1-y)/4 -sinpi(t) cospi(t) -tanpi(t)
63 63 * ---------------------------------------------------
64 64 *
65 65 * NOTE. This program compute sinpi/cospi(t<0.25) by __k_sin/cos(pi*t, 0.0).
66 66 * This will return a result with error slightly more than one ulp (but less
67 67 * than 2 ulp). If one wants accurate result, one may break up pi*t in
68 68 * high (tpi_h) and low (tpi_l) parts and call __k_sin/cos(tip_h, tip_lo)
69 69 * instead.
↓ open down ↓ |
29 lines elided |
↑ open up ↑ |
70 70 */
71 71
72 72 #include "libm.h"
73 73 #include "libm_protos.h"
74 74 #include "libm_macros.h"
75 75 #include <math.h>
76 76 #if defined(__SUNPRO_C)
77 77 #include <sunmath.h>
78 78 #endif
79 79
80 -static const double
81 - pi = 3.14159265358979323846, /* 400921FB,54442D18 */
80 +/* BEGIN CSTYLEd */
81 +static const double pi = 3.14159265358979323846, /* 400921FB,54442D18 */
82 82 sqrth_h = 0.70710678118654757273731092936941422522068023681640625,
83 83 sqrth_l = -4.8336466567264565185935844299127932213411660131004e-17;
84 -/* INDENT ON */
84 +/* END CSTYLED */
85 85
86 86 void
87 87 sincospi(double x, double *s, double *c)
88 88 {
89 89 double y, z, t;
90 90 int n, ix, k;
91 91 int hx = ((int *)&x)[HIWORD];
92 92 unsigned h, lx = ((unsigned *)&x)[LOWORD];
93 93
94 94 ix = hx & ~0x80000000;
95 95 n = (ix >> 20) - 0x3ff;
96 +
96 97 if (n >= 51) { /* |x| >= 2**51 */
97 98 if (n >= 1024) {
98 99 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
99 100 *s = *c = ix >= 0x7ff80000 ? x : x - x;
100 101 /* assumes sparc-like QNaN */
101 102 #else
102 103 *s = *c = x - x;
103 104 #endif
104 105 } else {
105 106 if (n >= 53) {
106 107 *s = 0.0;
107 108 *c = 1.0;
108 109 } else if (n == 52) {
109 110 if ((lx & 1) == 0) {
110 111 *s = 0.0;
111 112 *c = 1.0;
112 113 } else {
113 114 *s = -0.0;
↓ open down ↓ |
8 lines elided |
↑ open up ↑ |
114 115 *c = -1.0;
115 116 }
116 117 } else { /* n == 51 */
117 118 if ((lx & 1) == 0) {
118 119 *s = 0.0;
119 120 *c = 1.0;
120 121 } else {
121 122 *s = 1.0;
122 123 *c = 0.0;
123 124 }
125 +
124 126 if ((lx & 2) != 0) {
125 127 *s = -*s;
126 128 *c = -*c;
127 129 }
128 130 }
129 131 }
130 - } else if (n < -2) /* |x| < 0.25 */
132 + } else if (n < -2) { /* |x| < 0.25 */
131 133 *s = __k_sincos(pi * fabs(x), 0.0, c);
132 - else {
134 + } else {
133 135 /* y = |4x|, z = floor(y), and n = (int)(z mod 8.0) */
134 - if (ix < 0x41C00000) { /* |x| < 2**29 */
136 + if (ix < 0x41C00000) { /* |x| < 2**29 */
135 137 y = 4.0 * fabs(x);
136 - n = (int)y; /* exact */
138 + n = (int)y; /* exact */
137 139 z = (double)n;
138 140 k = z == y;
139 141 t = (y - z) * 0.25;
140 - } else { /* 2**29 <= |x| < 2**51 */
142 + } else { /* 2**29 <= |x| < 2**51 */
141 143 y = fabs(x);
142 144 k = 50 - n;
143 145 n = lx >> k;
144 146 h = n << k;
145 147 ((unsigned *)&z)[LOWORD] = h;
146 148 ((int *)&z)[HIWORD] = ix;
147 149 k = h == lx;
148 150 t = y - z;
149 151 }
150 - if (k) { /* x = N/4 */
152 +
153 + if (k) { /* x = N/4 */
151 154 if ((n & 1) != 0) {
152 155 *s = *c = sqrth_h + sqrth_l;
153 156 } else {
154 157 if ((n & 2) == 0) {
155 158 *s = 0.0;
156 159 *c = 1.0;
157 160 } else {
158 161 *s = 1.0;
159 162 *c = 0.0;
160 163 }
161 164 }
165 +
162 166 if ((n & 4) != 0)
163 167 *s = -*s;
168 +
164 169 if (((n + 1) & 4) != 0)
165 170 *c = -*c;
166 171 } else {
167 172 if ((n & 1) != 0)
168 173 t = 0.25 - t;
174 +
169 175 if (((n + (n & 1)) & 2) == 0)
170 176 *s = __k_sincos(pi * t, 0.0, c);
171 177 else
172 178 *c = __k_sincos(pi * t, 0.0, s);
179 +
173 180 if ((n & 4) != 0)
174 181 *s = -*s;
182 +
175 183 if (((n + 2) & 4) != 0)
176 184 *c = -*c;
177 185 }
178 186 }
187 +
179 188 if (hx < 0)
180 189 *s = -*s;
181 190 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX