1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __sincos = sincos 32 33 /* 34 * sincos(x,s,c) 35 * Accurate Table look-up algorithm by K.C. Ng, 2000. 36 * 37 * 1. Reduce x to x>0 by cos(-x)=cos(x), sin(-x)=-sin(x). 38 * 2. For 0<= x < 8, let i = (64*x chopped)-10. Let d = x - a[i], where 39 * a[i] is a double that is close to (i+10.5)/64 (and hence |d|< 10.5/64) 40 * and such that sin(a[i]) and cos(a[i]) is close to a double (with error 41 * less than 2**-8 ulp). Then 42 * 43 * cos(x) = cos(a[i]+d) = cos(a[i])cos(d) - sin(a[i])*sin(d) 44 * = TBL_cos_a[i]*(1+QQ1*d^2+QQ2*d^4) - 45 * TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5) 46 * = TBL_cos_a[i] + (TBL_cos_a[i]*d^2*(QQ1+QQ2*d^2) - 47 * TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5)) 48 * 49 * sin(x) = sin(a[i]+d) = sin(a[i])cos(d) + cos(a[i])*sin(d) 50 * = TBL_sin_a[i]*(1+QQ1*d^2+QQ2*d^4) + 51 * TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5) 52 * = TBL_sin_a[i] + (TBL_sin_a[i]*d^2*(QQ1+QQ2*d^2) + 53 * TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5)) 54 * 55 * Note: for x close to n*pi/2, special treatment is need for either 56 * sin or cos: 57 * i in [81, 100] ( pi/2 +-10.5/64 => tiny cos(x) = sin(pi/2-x) 58 * i in [181,200] ( pi +-10.5/64 => tiny sin(x) = sin(pi-x) 59 * i in [282,301] ( 3pi/2+-10.5/64 => tiny cos(x) = sin(x-3pi/2) 60 * i in [382,401] ( 2pi +-10.5/64 => tiny sin(x) = sin(x-2pi) 61 * i in [483,502] ( 5pi/2+-10.5/64 => tiny cos(x) = sin(5pi/2-x) 62 * 63 * 3. For x >= 8.0, use kernel function __rem_pio2 to perform argument 64 * reduction and call __k_sincos_ to compute sin and cos. 65 * 66 * kernel function: 67 * __rem_pio2 ... argument reduction routine 68 * __k_sincos_ ... sine and cosine function on [-pi/4,pi/4] 69 * 70 * Method. 71 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4]. 72 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in 73 * [-pi/2 , +pi/2], and let n = k mod 4. 74 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have 75 * 76 * n sin(x) cos(x) tan(x) 77 * ---------------------------------------------------------- 78 * 0 S C S/C 79 * 1 C -S -C/S 80 * 2 -S -C S/C 81 * 3 -C S -C/S 82 * ---------------------------------------------------------- 83 * 84 * Special cases: 85 * Let trig be any of sin, cos, or tan. 86 * trig(+-INF) is NaN, with signals; 87 * trig(NaN) is that NaN; 88 * 89 * Accuracy: 90 * TRIG(x) returns trig(x) nearly rounded (less than 1 ulp) 91 */ 92 93 #include "libm.h" 94 95 /* BEGIN CSTYLED */ 96 static const double sc[] = { 97 /* ONE = */ 98 1.0, 99 /* NONE = */ -1.0, 100 101 /* 102 * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008 103 */ 104 /* PP1 = */-0.166666666666316558867252052378889521480627858683055567, 105 /* PP2 = */.008333315652997472323564894248466758248475374977974017927, 106 107 /* 108 * |(sin(x) - (x+p1*x^3+...+p4*x^9)| 109 * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125 110 * | x | 111 */ 112 /* P1 = */ -1.666666666666629669805215138920301589656e-0001, 113 /* P2 = */ 8.333333332390951295683993455280336376663e-0003, 114 /* P3 = */ -1.984126237997976692791551778230098403960e-0004, 115 /* P4 = */ 2.753403624854277237649987622848330351110e-0006, 116 117 /* 118 * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d) 119 */ 120 /* QQ1 = */-0.4999999999975492381842911981948418542742729, 121 /* QQ2 = */0.041666542904352059294545209158357640398771740, 122 /* Q1 = */ -0.5, 123 /* Q2 = */ 4.166666666500350703680945520860748617445e-0002, 124 /* Q3 = */ -1.388888596436972210694266290577848696006e-0003, 125 /* Q4 = */ 2.478563078858589473679519517892953492192e-0005, 126 /* PIO2_H = */ 1.570796326794896557999, 127 /* PIO2_L = */ 6.123233995736765886130e-17, 128 /* PIO2_L0 = */ 6.123233995727922165564e-17, 129 /* PIO2_L1 = */ 8.843720566135701120255e-29, 130 /* PI_H = */ 3.1415926535897931159979634685, 131 /* PI_L = */ 1.22464679914735317722606593227425e-16, 132 /* PI_L0 = */ 1.22464679914558443311283879205095e-16, 133 /* PI_L1 = */ 1.768744113227140223300005233735517376e-28, 134 /* PI3O2_H = */ 4.712388980384689673997, 135 /* PI3O2_L = */ 1.836970198721029765839e-16, 136 /* PI3O2_L0 = */ 1.836970198720396133587e-16, 137 /* PI3O2_L1 = */ 6.336322524749201142226e-29, 138 /* PI2_H = */ 6.2831853071795862319959269370, 139 /* PI2_L = */ 2.44929359829470635445213186454850e-16, 140 /* PI2_L0 = */ 2.44929359829116886622567758410190e-16, 141 /* PI2_L1 = */ 3.537488226454280446600010467471034752e-28, 142 /* PI5O2_H = */ 7.853981633974482789995, 143 /* PI5O2_L = */ 3.061616997868382943065e-16, 144 /* PI5O2_L0 = */ 3.061616997861941598865e-16, 145 /* PI5O2_L1 = */ 6.441344200433640781982e-28, 146 }; 147 /* END CSTYLED */ 148 149 #define ONE sc[0] 150 #define PP1 sc[2] 151 #define PP2 sc[3] 152 #define P1 sc[4] 153 #define P2 sc[5] 154 #define P3 sc[6] 155 #define P4 sc[7] 156 #define QQ1 sc[8] 157 #define QQ2 sc[9] 158 #define Q1 sc[10] 159 #define Q2 sc[11] 160 #define Q3 sc[12] 161 #define Q4 sc[13] 162 #define PIO2_H sc[14] 163 #define PIO2_L sc[15] 164 #define PIO2_L0 sc[16] 165 #define PIO2_L1 sc[17] 166 #define PI_H sc[18] 167 #define PI_L sc[19] 168 #define PI_L0 sc[20] 169 #define PI_L1 sc[21] 170 #define PI3O2_H sc[22] 171 #define PI3O2_L sc[23] 172 #define PI3O2_L0 sc[24] 173 #define PI3O2_L1 sc[25] 174 #define PI2_H sc[26] 175 #define PI2_L sc[27] 176 #define PI2_L0 sc[28] 177 #define PI2_L1 sc[29] 178 #define PI5O2_H sc[30] 179 #define PI5O2_L sc[31] 180 #define PI5O2_L0 sc[32] 181 #define PI5O2_L1 sc[33] 182 #define PoS(x, z) ((x * z) * (PP1 + z * PP2)) 183 #define PoL(x, z) ((x * z) * ((P1 + z * P2) + (z * z) * \ 184 (P3 + z * P4))) 185 186 extern const double _TBL_sincos[], _TBL_sincosx[]; 187 188 void 189 sincos(double x, double *s, double *c) 190 { 191 double z, y[2], w, t, v, p, q; 192 int i, j, n, hx, ix, lx; 193 194 hx = ((int *)&x)[HIWORD]; 195 lx = ((int *)&x)[LOWORD]; 196 ix = hx & ~0x80000000; 197 198 if (ix <= 0x3fc50000) { /* |x| < 10.5/64 = 0.164062500 */ 199 if (ix < 0x3e400000) { /* |x| < 2**-27 */ 200 if ((int)x == 0) 201 *c = ONE; 202 203 *s = x; 204 } else { 205 z = x * x; 206 207 if (ix < 0x3f800000) { /* |x| < 0.008 */ 208 q = z * (QQ1 + z * QQ2); 209 p = PoS(x, z); 210 } else { 211 q = z * ((Q1 + z * Q2) + (z * z) * (Q3 + z * 212 Q4)); 213 p = PoL(x, z); 214 } 215 216 *c = ONE + q; 217 *s = x + p; 218 } 219 220 return; 221 } 222 223 n = ix >> 20; 224 i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n); 225 j = i - 10; 226 227 if (n < 0x402) { /* |x| < 8 */ 228 x = fabs(x); 229 v = x - _TBL_sincosx[j]; 230 t = v * v; 231 w = _TBL_sincos[(j << 1)]; 232 z = _TBL_sincos[(j << 1) + 1]; 233 p = v + PoS(v, t); 234 q = t * (QQ1 + t * QQ2); 235 236 if ((((j - 81) ^ (j - 101)) | ((j - 282) ^ (j - 302)) | ((j - 237 483) ^ (j - 503)) | ((j - 181) ^ (j - 201)) | ((j - 382) ^ 238 (j - 402))) < 0) { 239 if (j <= 101) { 240 /* near pi/2, cos(x) = sin(pi/2-x) */ 241 t = w * q + z * p; 242 *s = (hx >= 0) ? w + t : -w - t; 243 p = PIO2_H - x; 244 i = ix - 0x3ff921fb; 245 x = p + PIO2_L; 246 247 if ((i | ((lx - 0x54442D00) & 0xffffff00)) == 248 0) { 249 /* very close to pi/2 */ 250 x = p + PIO2_L0; 251 *c = x + PIO2_L1; 252 } else { 253 z = x * x; 254 255 if (((ix - 0x3ff92000) >> 12) == 0) { 256 /* |pi/2-x|<2**-8 */ 257 w = PIO2_L + PoS(x, z); 258 } else { 259 w = PIO2_L + PoL(x, z); 260 } 261 262 *c = p + w; 263 } 264 } else if (j <= 201) { 265 /* near pi, sin(x) = sin(pi-x) */ 266 *c = z - (w * p - z * q); 267 p = PI_H - x; 268 i = ix - 0x400921fb; 269 x = p + PI_L; 270 271 if ((i | ((lx - 0x54442D00) & 0xffffff00)) == 272 0) { 273 /* very close to pi */ 274 x = p + PI_L0; 275 *s = (hx >= 0) ? x + PI_L1 : -(x + 276 PI_L1); 277 } else { 278 z = x * x; 279 280 if (((ix - 0x40092000) >> 11) == 0) { 281 /* |pi-x|<2**-8 */ 282 w = PI_L + PoS(x, z); 283 } else { 284 w = PI_L + PoL(x, z); 285 } 286 287 *s = (hx >= 0) ? p + w : -p - w; 288 } 289 } else if (j <= 302) { 290 /* near 3/2pi, cos(x)=sin(x-3/2pi) */ 291 t = w * q + z * p; 292 *s = (hx >= 0) ? w + t : -w - t; 293 p = x - PI3O2_H; 294 i = ix - 0x4012D97C; 295 x = p - PI3O2_L; 296 297 if ((i | ((lx - 0x7f332100) & 0xffffff00)) == 298 0) { 299 /* very close to 3/2pi */ 300 x = p - PI3O2_L0; 301 *c = x - PI3O2_L1; 302 } else { 303 z = x * x; 304 305 if (((ix - 0x4012D800) >> 9) == 0) { 306 /* |3/2pi-x|<2**-8 */ 307 w = PoS(x, z) - PI3O2_L; 308 } else { 309 w = PoL(x, z) - PI3O2_L; 310 } 311 312 *c = p + w; 313 } 314 } else if (j <= 402) { 315 /* near 2pi, sin(x)=sin(x-2pi) */ 316 *c = z - (w * p - z * q); 317 p = x - PI2_H; 318 i = ix - 0x401921fb; 319 x = p - PI2_L; 320 321 if ((i | ((lx - 0x54442D00) & 0xffffff00)) == 322 0) { 323 /* very close to 2pi */ 324 x = p - PI2_L0; 325 *s = (hx >= 0) ? x - PI2_L1 : -(x - 326 PI2_L1); 327 } else { 328 z = x * x; 329 330 if (((ix - 0x40192000) >> 10) == 0) { 331 /* |x-2pi|<2**-8 */ 332 w = PoS(x, z) - PI2_L; 333 } else { 334 w = PoL(x, z) - PI2_L; 335 } 336 337 *s = (hx >= 0) ? p + w : -p - w; 338 } 339 } else { 340 /* near 5pi/2, cos(x) = sin(5pi/2-x) */ 341 t = w * q + z * p; 342 *s = (hx >= 0) ? w + t : -w - t; 343 p = PI5O2_H - x; 344 i = ix - 0x401F6A7A; 345 x = p + PI5O2_L; 346 347 if ((i | ((lx - 0x29553800) & 0xffffff00)) == 348 0) { 349 /* very close to pi/2 */ 350 x = p + PI5O2_L0; 351 *c = x + PI5O2_L1; 352 } else { 353 z = x * x; 354 355 if (((ix - 0x401F6A7A) >> 7) == 0) { 356 /* |5pi/2-x|<2**-8 */ 357 w = PI5O2_L + PoS(x, z); 358 } else { 359 w = PI5O2_L + PoL(x, z); 360 } 361 362 *c = p + w; 363 } 364 } 365 } else { 366 *c = z - (w * p - z * q); 367 t = w * q + z * p; 368 *s = (hx >= 0) ? w + t : -w - t; 369 } 370 371 return; 372 } 373 374 if (ix >= 0x7ff00000) { 375 *s = *c = x / x; 376 return; 377 } 378 379 /* argument reduction needed */ 380 n = __rem_pio2(x, y); 381 382 switch (n & 3) { 383 case 0: 384 *s = __k_sincos(y[0], y[1], c); 385 break; 386 case 1: 387 *c = -__k_sincos(y[0], y[1], s); 388 break; 389 case 2: 390 *s = -__k_sincos(y[0], y[1], c); 391 *c = -*c; 392 break; 393 default: 394 *c = __k_sincos(y[0], y[1], s); 395 *s = -*s; 396 } 397 }