Print this page
11210 libm should be cstyle(1ONBLD) clean

Split Close
Expand all
Collapse all
          --- old/usr/src/lib/libm/common/C/sin.c
          +++ new/usr/src/lib/libm/common/C/sin.c
↓ open down ↓ 10 lines elided ↑ open up ↑
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
       21 +
  21   22  /*
  22   23   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  23   24   */
       25 +
  24   26  /*
  25   27   * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
  26   28   * Use is subject to license terms.
  27   29   */
  28   30  
  29   31  #pragma weak __sin = sin
  30   32  
  31      -/* INDENT OFF */
       33 +
  32   34  /*
  33   35   * sin(x)
  34   36   * Accurate Table look-up algorithm by K.C. Ng, May, 1995.
  35   37   *
  36   38   * Algorithm: see sincos.c
  37   39   */
  38   40  
  39   41  #include "libm.h"
  40   42  
  41   43  static const double sc[] = {
  42      -/* ONE  = */  1.0,
       44 +/* ONE  = */
       45 +        1.0,
  43   46  /* NONE = */ -1.0,
       47 +
  44   48  /*
  45   49   * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008
  46   50   */
  47      -/* PP1  = */ -0.166666666666316558867252052378889521480627858683055567,
  48      -/* PP2  = */   .008333315652997472323564894248466758248475374977974017927,
       51 +/* PP1  = */-0.166666666666316558867252052378889521480627858683055567,
       52 +/* PP2  = */.008333315652997472323564894248466758248475374977974017927,
       53 +
  49   54  /*
  50   55   * |(sin(x) - (x+p1*x^3+...+p4*x^9)|
  51   56   * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125
  52   57   * |                 x             |
  53   58   */
  54      -/* P1   = */ -1.666666666666629669805215138920301589656e-0001,
  55      -/* P2   = */  8.333333332390951295683993455280336376663e-0003,
  56      -/* P3   = */ -1.984126237997976692791551778230098403960e-0004,
  57      -/* P4   = */  2.753403624854277237649987622848330351110e-0006,
       59 +/* P1   = */ -1.666666666666629669805215138920301589656e-0001,
       60 +/* P2   = */ 8.333333332390951295683993455280336376663e-0003,
       61 +/* P3   = */ -1.984126237997976692791551778230098403960e-0004,
       62 +/* P4   = */ 2.753403624854277237649987622848330351110e-0006,
       63 +
  58   64  /*
  59   65   * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d)
  60   66   */
  61      -/* QQ1  = */ -0.4999999999975492381842911981948418542742729,
  62      -/* QQ2  = */  0.041666542904352059294545209158357640398771740,
  63      -/* PI_H = */  3.1415926535897931159979634685,
  64      -/* PI_L    = */  1.22464679914735317722606593227425e-16,
  65      -/* PI_L0   = */  1.22464679914558443311283879205095e-16,
  66      -/* PI_L1   = */  1.768744113227140223300005233735517376e-28,
  67      -/* PI2_H   = */  6.2831853071795862319959269370,
  68      -/* PI2_L   = */  2.44929359829470635445213186454850e-16,
  69      -/* PI2_L0  = */  2.44929359829116886622567758410190e-16,
  70      -/* PI2_L1  = */  3.537488226454280446600010467471034752e-28,
       67 +/* QQ1  = */-0.4999999999975492381842911981948418542742729,
       68 +/* QQ2  = */0.041666542904352059294545209158357640398771740,
       69 +/* PI_H = */ 3.1415926535897931159979634685,
       70 +/* PI_L    = */ 1.22464679914735317722606593227425e-16,
       71 +/* PI_L0   = */ 1.22464679914558443311283879205095e-16,
       72 +/* PI_L1   = */ 1.768744113227140223300005233735517376e-28,
       73 +/* PI2_H   = */ 6.2831853071795862319959269370,
       74 +/* PI2_L   = */ 2.44929359829470635445213186454850e-16,
       75 +/* PI2_L0  = */ 2.44929359829116886622567758410190e-16,
       76 +/* PI2_L1  = */ 3.537488226454280446600010467471034752e-28,
  71   77  };
  72      -/* INDENT ON */
  73   78  
  74      -#define ONEA    sc
  75      -#define ONE     sc[0]
  76      -#define NONE    sc[1]
  77      -#define PP1     sc[2]
  78      -#define PP2     sc[3]
  79      -#define P1      sc[4]
  80      -#define P2      sc[5]
  81      -#define P3      sc[6]
  82      -#define P4      sc[7]
  83      -#define QQ1     sc[8]
  84      -#define QQ2     sc[9]
  85      -#define PI_H    sc[10]
  86      -#define PI_L    sc[11]
  87      -#define PI_L0   sc[12]
  88      -#define PI_L1   sc[13]
  89      -#define PI2_H   sc[14]
  90      -#define PI2_L   sc[15]
  91      -#define PI2_L0  sc[16]
  92      -#define PI2_L1  sc[17]
  93   79  
  94      -extern const double  _TBL_sincos[], _TBL_sincosx[];
       80 +#define ONEA            sc
       81 +#define ONE             sc[0]
       82 +#define NONE            sc[1]
       83 +#define PP1             sc[2]
       84 +#define PP2             sc[3]
       85 +#define P1              sc[4]
       86 +#define P2              sc[5]
       87 +#define P3              sc[6]
       88 +#define P4              sc[7]
       89 +#define QQ1             sc[8]
       90 +#define QQ2             sc[9]
       91 +#define PI_H            sc[10]
       92 +#define PI_L            sc[11]
       93 +#define PI_L0           sc[12]
       94 +#define PI_L1           sc[13]
       95 +#define PI2_H           sc[14]
       96 +#define PI2_L           sc[15]
       97 +#define PI2_L0          sc[16]
       98 +#define PI2_L1          sc[17]
       99 +
      100 +extern const double _TBL_sincos[], _TBL_sincosx[];
  95  101  
  96  102  double
  97      -sin(double x) {
  98      -        double  z, y[2], w, s, v, p, q;
  99      -        int     i, j, n, hx, ix, lx;
      103 +sin(double x)
      104 +{
      105 +        double z, y[2], w, s, v, p, q;
      106 +        int i, j, n, hx, ix, lx;
 100  107  
 101  108          hx = ((int *)&x)[HIWORD];
 102  109          lx = ((int *)&x)[LOWORD];
 103  110          ix = hx & ~0x80000000;
 104  111  
 105      -        if (ix <= 0x3fc50000) { /* |x| < .1640625 */
      112 +        if (ix <= 0x3fc50000) {         /* |x| < .1640625 */
 106  113                  if (ix < 0x3e400000)    /* |x| < 2**-27 */
 107  114                          if ((int)x == 0)
 108  115                                  return (x);
      116 +
 109  117                  z = x * x;
      118 +
 110  119                  if (ix < 0x3f800000)    /* |x| < 2**-8 */
 111  120                          w = (z * x) * (PP1 + z * PP2);
 112  121                  else
 113  122                          w = (x * z) * ((P1 + z * P2) + (z * z) * (P3 + z * P4));
      123 +
 114  124                  return (x + w);
 115  125          }
 116  126  
 117  127          /* for .1640625 < x < M, */
 118  128          n = ix >> 20;
 119      -        if (n < 0x402) {        /* x < 8 */
      129 +
      130 +        if (n < 0x402) {                /* x < 8 */
 120  131                  i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n);
 121  132                  j = i - 10;
 122  133                  x = fabs(x);
 123  134                  v = x - _TBL_sincosx[j];
      135 +
 124  136                  if (((j - 181) ^ (j - 201)) < 0) {
 125  137                          /* near pi, sin(x) = sin(pi-x) */
 126  138                          p = PI_H - x;
 127  139                          i = ix - 0x400921fb;
 128  140                          x = p + PI_L;
      141 +
 129  142                          if ((i | ((lx - 0x54442D00) & 0xffffff00)) == 0) {
 130  143                                  /* very close to pi */
 131  144                                  x = p + PI_L0;
 132      -                                return ((hx >= 0)? x + PI_L1 : -(x + PI_L1));
      145 +                                return ((hx >= 0) ? x + PI_L1 : -(x + PI_L1));
 133  146                          }
      147 +
 134  148                          z = x * x;
      149 +
 135  150                          if (((ix - 0x40092000) >> 11) == 0) {
 136  151                                  /* |pi-x|<2**-8 */
 137  152                                  w = PI_L + (z * x) * (PP1 + z * PP2);
 138  153                          } else {
 139      -                                w = PI_L + (z * x) * ((P1 + z * P2) +
 140      -                                    (z * z) * (P3 + z * P4));
      154 +                                w = PI_L + (z * x) * ((P1 + z * P2) + (z * z) *
      155 +                                    (P3 + z * P4));
 141  156                          }
 142      -                        return ((hx >= 0)? p + w : -p - w);
      157 +
      158 +                        return ((hx >= 0) ? p + w : -p - w);
 143  159                  }
      160 +
 144  161                  s = v * v;
      162 +
 145  163                  if (((j - 382) ^ (j - 402)) < 0) {
 146  164                          /* near 2pi, sin(x) = sin(x-2pi) */
 147  165                          p = x - PI2_H;
 148  166                          i = ix - 0x401921fb;
 149  167                          x = p - PI2_L;
      168 +
 150  169                          if ((i | ((lx - 0x54442D00) & 0xffffff00)) == 0) {
 151  170                                  /* very close to 2pi */
 152  171                                  x = p - PI2_L0;
 153      -                                return ((hx >= 0)? x - PI2_L1 : -(x - PI2_L1));
      172 +                                return ((hx >= 0) ? x - PI2_L1 : -(x - PI2_L1));
 154  173                          }
      174 +
 155  175                          z = x * x;
      176 +
 156  177                          if (((ix - 0x40192000) >> 10) == 0) {
 157  178                                  /* |x-2pi|<2**-8 */
 158  179                                  w = (z * x) * (PP1 + z * PP2) - PI2_L;
 159  180                          } else {
 160      -                                w = (z * x) * ((P1 + z * P2) +
 161      -                                    (z * z) * (P3 + z * P4)) - PI2_L;
      181 +                                w = (z * x) * ((P1 + z * P2) + (z * z) * (P3 +
      182 +                                    z * P4)) - PI2_L;
 162  183                          }
 163      -                        return ((hx >= 0)? p + w : -p - w);
      184 +
      185 +                        return ((hx >= 0) ? p + w : -p - w);
 164  186                  }
      187 +
 165  188                  j <<= 1;
 166      -                w = _TBL_sincos[j+1];
      189 +                w = _TBL_sincos[j + 1];
 167  190                  z = _TBL_sincos[j];
 168  191                  p = v + (v * s) * (PP1 + s * PP2);
 169  192                  q = s * (QQ1 + s * QQ2);
 170  193                  v = w * p + z * q;
 171      -                return ((hx >= 0)? z + v : -z - v);
      194 +                return ((hx >= 0) ? z + v : -z - v);
 172  195          }
 173  196  
 174      -        if (ix >= 0x7ff00000)   /* sin(Inf or NaN) is NaN */
      197 +        if (ix >= 0x7ff00000)           /* sin(Inf or NaN) is NaN */
 175  198                  return (x / x);
 176  199  
 177  200          /* argument reduction needed */
 178  201          n = __rem_pio2(x, y);
      202 +
 179  203          switch (n & 3) {
 180  204          case 0:
 181  205                  return (__k_sin(y[0], y[1]));
 182  206          case 1:
 183  207                  return (__k_cos(y[0], y[1]));
 184  208          case 2:
 185  209                  return (-__k_sin(y[0], y[1]));
 186  210          default:
 187  211                  return (-__k_cos(y[0], y[1]));
 188  212          }
 189  213  }
    
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX