Print this page
11210 libm should be cstyle(1ONBLD) clean

@@ -16,62 +16,68 @@
  * fields enclosed by brackets "[]" replaced with your own identifying
  * information: Portions Copyright [yyyy] [name of copyright owner]
  *
  * CDDL HEADER END
  */
+
 /*
  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  */
+
 /*
  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
  * Use is subject to license terms.
  */
 
 #pragma weak __sin = sin
 
-/* INDENT OFF */
+
 /*
  * sin(x)
  * Accurate Table look-up algorithm by K.C. Ng, May, 1995.
  *
  * Algorithm: see sincos.c
  */
 
 #include "libm.h"
 
 static const double sc[] = {
-/* ONE  = */  1.0,
+/* ONE  = */
+        1.0,
 /* NONE = */ -1.0,
+
 /*
  * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008
  */
-/* PP1  = */ -0.166666666666316558867252052378889521480627858683055567,
-/* PP2  = */   .008333315652997472323564894248466758248475374977974017927,
+/* PP1  = */-0.166666666666316558867252052378889521480627858683055567,
+/* PP2  = */.008333315652997472323564894248466758248475374977974017927,
+
 /*
  * |(sin(x) - (x+p1*x^3+...+p4*x^9)|
  * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125
  * |                 x             |
  */
 /* P1   = */ -1.666666666666629669805215138920301589656e-0001,
 /* P2   = */  8.333333332390951295683993455280336376663e-0003,
 /* P3   = */ -1.984126237997976692791551778230098403960e-0004,
 /* P4   = */  2.753403624854277237649987622848330351110e-0006,
+
 /*
  * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d)
  */
-/* QQ1  = */ -0.4999999999975492381842911981948418542742729,
-/* QQ2  = */  0.041666542904352059294545209158357640398771740,
+/* QQ1  = */-0.4999999999975492381842911981948418542742729,
+/* QQ2  = */0.041666542904352059294545209158357640398771740,
 /* PI_H = */  3.1415926535897931159979634685,
 /* PI_L    = */  1.22464679914735317722606593227425e-16,
 /* PI_L0   = */  1.22464679914558443311283879205095e-16,
 /* PI_L1   = */  1.768744113227140223300005233735517376e-28,
 /* PI2_H   = */  6.2831853071795862319959269370,
 /* PI2_L   = */  2.44929359829470635445213186454850e-16,
 /* PI2_L0  = */  2.44929359829116886622567758410190e-16,
 /* PI2_L1  = */  3.537488226454280446600010467471034752e-28,
 };
-/* INDENT ON */
+
 
 #define ONEA    sc
 #define ONE     sc[0]
 #define NONE    sc[1]
 #define PP1     sc[2]

@@ -92,11 +98,12 @@
 #define PI2_L1  sc[17]
 
 extern const double  _TBL_sincos[], _TBL_sincosx[];
 
 double
-sin(double x) {
+sin(double x)
+{
         double  z, y[2], w, s, v, p, q;
         int     i, j, n, hx, ix, lx;
 
         hx = ((int *)&x)[HIWORD];
         lx = ((int *)&x)[LOWORD];

@@ -104,80 +111,97 @@
 
         if (ix <= 0x3fc50000) { /* |x| < .1640625 */
                 if (ix < 0x3e400000)    /* |x| < 2**-27 */
                         if ((int)x == 0)
                                 return (x);
+
                 z = x * x;
+
                 if (ix < 0x3f800000)    /* |x| < 2**-8 */
                         w = (z * x) * (PP1 + z * PP2);
                 else
                         w = (x * z) * ((P1 + z * P2) + (z * z) * (P3 + z * P4));
+
                 return (x + w);
         }
 
         /* for .1640625 < x < M, */
         n = ix >> 20;
+
         if (n < 0x402) {        /* x < 8 */
                 i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n);
                 j = i - 10;
                 x = fabs(x);
                 v = x - _TBL_sincosx[j];
+
                 if (((j - 181) ^ (j - 201)) < 0) {
                         /* near pi, sin(x) = sin(pi-x) */
                         p = PI_H - x;
                         i = ix - 0x400921fb;
                         x = p + PI_L;
+
                         if ((i | ((lx - 0x54442D00) & 0xffffff00)) == 0) {
                                 /* very close to pi */
                                 x = p + PI_L0;
-                                return ((hx >= 0)? x + PI_L1 : -(x + PI_L1));
+                                return ((hx >= 0) ? x + PI_L1 : -(x + PI_L1));
                         }
+
                         z = x * x;
+
                         if (((ix - 0x40092000) >> 11) == 0) {
                                 /* |pi-x|<2**-8 */
                                 w = PI_L + (z * x) * (PP1 + z * PP2);
                         } else {
-                                w = PI_L + (z * x) * ((P1 + z * P2) +
-                                    (z * z) * (P3 + z * P4));
+                                w = PI_L + (z * x) * ((P1 + z * P2) + (z * z) *
+                                    (P3 + z * P4));
                         }
-                        return ((hx >= 0)? p + w : -p - w);
+
+                        return ((hx >= 0) ? p + w : -p - w);
                 }
+
                 s = v * v;
+
                 if (((j - 382) ^ (j - 402)) < 0) {
                         /* near 2pi, sin(x) = sin(x-2pi) */
                         p = x - PI2_H;
                         i = ix - 0x401921fb;
                         x = p - PI2_L;
+
                         if ((i | ((lx - 0x54442D00) & 0xffffff00)) == 0) {
                                 /* very close to 2pi */
                                 x = p - PI2_L0;
-                                return ((hx >= 0)? x - PI2_L1 : -(x - PI2_L1));
+                                return ((hx >= 0) ? x - PI2_L1 : -(x - PI2_L1));
                         }
+
                         z = x * x;
+
                         if (((ix - 0x40192000) >> 10) == 0) {
                                 /* |x-2pi|<2**-8 */
                                 w = (z * x) * (PP1 + z * PP2) - PI2_L;
                         } else {
-                                w = (z * x) * ((P1 + z * P2) +
-                                    (z * z) * (P3 + z * P4)) - PI2_L;
+                                w = (z * x) * ((P1 + z * P2) + (z * z) * (P3 +
+                                    z * P4)) - PI2_L;
                         }
-                        return ((hx >= 0)? p + w : -p - w);
+
+                        return ((hx >= 0) ? p + w : -p - w);
                 }
+
                 j <<= 1;
-                w = _TBL_sincos[j+1];
+                w = _TBL_sincos[j + 1];
                 z = _TBL_sincos[j];
                 p = v + (v * s) * (PP1 + s * PP2);
                 q = s * (QQ1 + s * QQ2);
                 v = w * p + z * q;
-                return ((hx >= 0)? z + v : -z - v);
+                return ((hx >= 0) ? z + v : -z - v);
         }
 
         if (ix >= 0x7ff00000)   /* sin(Inf or NaN) is NaN */
                 return (x / x);
 
         /* argument reduction needed */
         n = __rem_pio2(x, y);
+
         switch (n & 3) {
         case 0:
                 return (__k_sin(y[0], y[1]));
         case 1:
                 return (__k_cos(y[0], y[1]));