1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __sin = sin 32 33 34 /* 35 * sin(x) 36 * Accurate Table look-up algorithm by K.C. Ng, May, 1995. 37 * 38 * Algorithm: see sincos.c 39 */ 40 41 #include "libm.h" 42 43 static const double sc[] = { 44 /* ONE = */ 45 1.0, 46 /* NONE = */ -1.0, 47 48 /* 49 * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008 50 */ 51 /* PP1 = */-0.166666666666316558867252052378889521480627858683055567, 52 /* PP2 = */.008333315652997472323564894248466758248475374977974017927, 53 54 /* 55 * |(sin(x) - (x+p1*x^3+...+p4*x^9)| 56 * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125 57 * | x | 58 */ 59 /* P1 = */ -1.666666666666629669805215138920301589656e-0001, 60 /* P2 = */ 8.333333332390951295683993455280336376663e-0003, 61 /* P3 = */ -1.984126237997976692791551778230098403960e-0004, 62 /* P4 = */ 2.753403624854277237649987622848330351110e-0006, 63 64 /* 65 * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d) 66 */ 67 /* QQ1 = */-0.4999999999975492381842911981948418542742729, 68 /* QQ2 = */0.041666542904352059294545209158357640398771740, 69 /* PI_H = */ 3.1415926535897931159979634685, 70 /* PI_L = */ 1.22464679914735317722606593227425e-16, 71 /* PI_L0 = */ 1.22464679914558443311283879205095e-16, 72 /* PI_L1 = */ 1.768744113227140223300005233735517376e-28, 73 /* PI2_H = */ 6.2831853071795862319959269370, 74 /* PI2_L = */ 2.44929359829470635445213186454850e-16, 75 /* PI2_L0 = */ 2.44929359829116886622567758410190e-16, 76 /* PI2_L1 = */ 3.537488226454280446600010467471034752e-28, 77 }; 78 79 80 #define ONEA sc 81 #define ONE sc[0] 82 #define NONE sc[1] 83 #define PP1 sc[2] 84 #define PP2 sc[3] 85 #define P1 sc[4] 86 #define P2 sc[5] 87 #define P3 sc[6] 88 #define P4 sc[7] 89 #define QQ1 sc[8] 90 #define QQ2 sc[9] 91 #define PI_H sc[10] 92 #define PI_L sc[11] 93 #define PI_L0 sc[12] 94 #define PI_L1 sc[13] 95 #define PI2_H sc[14] 96 #define PI2_L sc[15] 97 #define PI2_L0 sc[16] 98 #define PI2_L1 sc[17] 99 100 extern const double _TBL_sincos[], _TBL_sincosx[]; 101 102 double 103 sin(double x) 104 { 105 double z, y[2], w, s, v, p, q; 106 int i, j, n, hx, ix, lx; 107 108 hx = ((int *)&x)[HIWORD]; 109 lx = ((int *)&x)[LOWORD]; 110 ix = hx & ~0x80000000; 111 112 if (ix <= 0x3fc50000) { /* |x| < .1640625 */ 113 if (ix < 0x3e400000) /* |x| < 2**-27 */ 114 if ((int)x == 0) 115 return (x); 116 117 z = x * x; 118 119 if (ix < 0x3f800000) /* |x| < 2**-8 */ 120 w = (z * x) * (PP1 + z * PP2); 121 else 122 w = (x * z) * ((P1 + z * P2) + (z * z) * (P3 + z * P4)); 123 124 return (x + w); 125 } 126 127 /* for .1640625 < x < M, */ 128 n = ix >> 20; 129 130 if (n < 0x402) { /* x < 8 */ 131 i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n); 132 j = i - 10; 133 x = fabs(x); 134 v = x - _TBL_sincosx[j]; 135 136 if (((j - 181) ^ (j - 201)) < 0) { 137 /* near pi, sin(x) = sin(pi-x) */ 138 p = PI_H - x; 139 i = ix - 0x400921fb; 140 x = p + PI_L; 141 142 if ((i | ((lx - 0x54442D00) & 0xffffff00)) == 0) { 143 /* very close to pi */ 144 x = p + PI_L0; 145 return ((hx >= 0) ? x + PI_L1 : -(x + PI_L1)); 146 } 147 148 z = x * x; 149 150 if (((ix - 0x40092000) >> 11) == 0) { 151 /* |pi-x|<2**-8 */ 152 w = PI_L + (z * x) * (PP1 + z * PP2); 153 } else { 154 w = PI_L + (z * x) * ((P1 + z * P2) + (z * z) * 155 (P3 + z * P4)); 156 } 157 158 return ((hx >= 0) ? p + w : -p - w); 159 } 160 161 s = v * v; 162 163 if (((j - 382) ^ (j - 402)) < 0) { 164 /* near 2pi, sin(x) = sin(x-2pi) */ 165 p = x - PI2_H; 166 i = ix - 0x401921fb; 167 x = p - PI2_L; 168 169 if ((i | ((lx - 0x54442D00) & 0xffffff00)) == 0) { 170 /* very close to 2pi */ 171 x = p - PI2_L0; 172 return ((hx >= 0) ? x - PI2_L1 : -(x - PI2_L1)); 173 } 174 175 z = x * x; 176 177 if (((ix - 0x40192000) >> 10) == 0) { 178 /* |x-2pi|<2**-8 */ 179 w = (z * x) * (PP1 + z * PP2) - PI2_L; 180 } else { 181 w = (z * x) * ((P1 + z * P2) + (z * z) * (P3 + 182 z * P4)) - PI2_L; 183 } 184 185 return ((hx >= 0) ? p + w : -p - w); 186 } 187 188 j <<= 1; 189 w = _TBL_sincos[j + 1]; 190 z = _TBL_sincos[j]; 191 p = v + (v * s) * (PP1 + s * PP2); 192 q = s * (QQ1 + s * QQ2); 193 v = w * p + z * q; 194 return ((hx >= 0) ? z + v : -z - v); 195 } 196 197 if (ix >= 0x7ff00000) /* sin(Inf or NaN) is NaN */ 198 return (x / x); 199 200 /* argument reduction needed */ 201 n = __rem_pio2(x, y); 202 203 switch (n & 3) { 204 case 0: 205 return (__k_sin(y[0], y[1])); 206 case 1: 207 return (__k_cos(y[0], y[1])); 208 case 2: 209 return (-__k_sin(y[0], y[1])); 210 default: 211 return (-__k_cos(y[0], y[1])); 212 } 213 }