Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/C/remainder.c
+++ new/usr/src/lib/libm/common/C/remainder.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
↓ open down ↓ |
10 lines elided |
↑ open up ↑ |
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 +
21 22 /*
22 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 24 */
25 +
24 26 /*
25 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
26 28 * Use is subject to license terms.
27 29 */
28 30
29 31 #pragma weak __remainder = remainder
30 32
31 33 /*
32 34 * remainder(x,p)
33 35 * Code originated from 4.3bsd.
34 36 * Modified by K.C. Ng for SUN 4.0 libm.
35 37 * Return :
36 - * returns x REM p = x - [x/p]*p as if in infinite precise arithmetic,
38 + * returns x REM p = x - [x/p]*p as if in infinite precise arithmetic,
37 39 * where [x/p] is the (inifinite bit) integer nearest x/p (in half way
38 40 * case choose the even one).
39 41 * Method :
40 42 * Based on fmod() return x-[x/p]chopped*p exactly.
41 43 */
42 44
43 45 #include "libm.h"
44 46
45 47 static const double zero = 0.0, half = 0.5;
46 48
47 49 double
48 -remainder(double x, double p) {
49 - double halfp;
50 - int ix, hx, hp;
50 +remainder(double x, double p)
51 +{
52 + double halfp;
53 + int ix, hx, hp;
51 54
52 55 ix = ((int *)&x)[HIWORD];
53 56 hx = ix & ~0x80000000;
54 57 hp = ((int *)&p)[HIWORD] & ~0x80000000;
55 58
56 59 if (hp > 0x7ff00000 || (hp == 0x7ff00000 && ((int *)&p)[LOWORD] != 0))
57 60 return (x * p);
61 +
58 62 if (hx > 0x7ff00000 || (hx == 0x7ff00000 && ((int *)&x)[LOWORD] != 0))
59 63 return (x * p);
60 64
61 65 if ((hp | ((int *)&p)[LOWORD]) == 0 || hx == 0x7ff00000)
62 66 return (_SVID_libm_err(x, p, 28));
63 67
64 68 p = fabs(p);
69 +
65 70 if (hp < 0x7fe00000)
66 71 x = fmod(x, p + p);
72 +
67 73 x = fabs(x);
74 +
68 75 if (hp < 0x00200000) {
69 76 if (x + x > p) {
70 77 if (x == p) /* avoid x-x=-0 in RM mode */
71 - return ((ix < 0)? -zero : zero);
78 + return ((ix < 0) ? -zero : zero);
79 +
72 80 x -= p;
81 +
73 82 if (x + x >= p)
74 83 x -= p;
75 84 }
76 85 } else {
77 86 halfp = half * p;
87 +
78 88 if (x > halfp) {
79 89 if (x == p) /* avoid x-x=-0 in RM mode */
80 - return ((ix < 0)? -zero : zero);
90 + return ((ix < 0) ? -zero : zero);
91 +
81 92 x -= p;
93 +
82 94 if (x >= halfp)
83 95 x -= p;
84 96 }
85 97 }
86 - return ((ix < 0)? -x : x);
98 +
99 + return ((ix < 0) ? -x : x);
87 100 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX