Print this page
11210 libm should be cstyle(1ONBLD) clean

Split Close
Expand all
Collapse all
          --- old/usr/src/lib/libm/common/C/log2.c
          +++ new/usr/src/lib/libm/common/C/log2.c
↓ open down ↓ 14 lines elided ↑ open up ↑
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24   24   */
       25 +
  25   26  /*
  26   27   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27   28   * Use is subject to license terms.
  28   29   */
  29   30  
  30   31  #pragma weak __log2 = log2
  31   32  
  32      -/* INDENT OFF */
       33 +
  33   34  /*
  34   35   * log2(x) = log(x)/log2
  35   36   *
  36   37   * Base on Table look-up algorithm with product polynomial
  37   38   * approximation for log(x).
  38   39   *
  39   40   * By K.C. Ng, Nov 29, 2004
  40   41   *
  41   42   * (a). For x in [1-0.125, 1+0.125], from log.c we have
  42   43   *      log(x) =  f + ((a1*f^2) *
↓ open down ↓ 35 lines elided ↑ open up ↑
  78   79   *      log2(NaN) is that NaN with no signal.
  79   80   *
  80   81   * Maximum error observed: less than 0.84 ulp
  81   82   *
  82   83   * Constants:
  83   84   * The hexadecimal values are the intended ones for the following constants.
  84   85   * The decimal values may be used, provided that the compiler will convert
  85   86   * from decimal to binary accurately enough to produce the hexadecimal values
  86   87   * shown.
  87   88   */
  88      -/* INDENT ON */
  89   89  
  90   90  #include "libm.h"
  91   91  #include "libm_protos.h"
  92   92  
  93   93  extern const double _TBL_log[];
  94   94  
  95   95  static const double P[] = {
  96      -/* ONE   */  1.0,
  97      -/* TWO52 */  4503599627370496.0,
  98      -/* LN10V */  1.4426950408889634073599246810018920433347,   /* 1/log10 */
  99      -/* ZERO  */  0.0,
       96 +/* ONE   */
       97 +        1.0,
       98 +/* TWO52 */ 4503599627370496.0,
       99 +/* LN10V */ 1.4426950408889634073599246810018920433347, /* 1/log10 */
      100 +/* ZERO  */ 0.0,
 100  101  /* A1    */ -9.6809362455249638217841932228967194640116e-02,
 101      -/* A2    */  1.99628461483039965074226529395673424005508422852e+0000,
 102      -/* A3    */  2.26812367662950720159642514772713184356689453125e+0000,
      102 +/* A2    */ 1.99628461483039965074226529395673424005508422852e+0000,
      103 +/* A3    */ 2.26812367662950720159642514772713184356689453125e+0000,
 103  104  /* A4    */ -9.05030639084976384900471657601883634924888610840e-0001,
 104  105  /* A5    */ -1.48275767132434044270894446526654064655303955078e+0000,
 105      -/* A6    */  1.88158320939722756293122074566781520843505859375e+0000,
 106      -/* A7    */  1.83309386046986411145098827546462416648864746094e+0000,
 107      -/* A8    */  1.24847063988317086291601754055591300129890441895e+0000,
 108      -/* A9    */  1.98372421445537705508854742220137268304824829102e+0000,
      106 +/* A6    */ 1.88158320939722756293122074566781520843505859375e+0000,
      107 +/* A7    */ 1.83309386046986411145098827546462416648864746094e+0000,
      108 +/* A8    */ 1.24847063988317086291601754055591300129890441895e+0000,
      109 +/* A9    */ 1.98372421445537705508854742220137268304824829102e+0000,
 109  110  /* A10   */ -3.94711735767898475035764249696512706577777862549e-0001,
 110      -/* A11   */  3.07890395362954372160402272129431366920471191406e+0000,
      111 +/* A11   */ 3.07890395362954372160402272129431366920471191406e+0000,
 111  112  /* A12   */ -9.60099585275022149311041630426188930869102478027e-0001,
 112  113  /* B1    */ -1.8039695622547469514898963204616532885451e-01,
 113      -/* B2    */  1.87161713283355151891381127914642725337613123482e+0000,
      114 +/* B2    */ 1.87161713283355151891381127914642725337613123482e+0000,
 114  115  /* B3    */ -1.89082956295731507978530316904652863740921020508e+0000,
 115  116  /* B4    */ -2.50562891673640253387134180229622870683670043945e+0000,
 116      -/* B5    */  1.64822828085258366037635369139024987816810607910e+0000,
      117 +/* B5    */ 1.64822828085258366037635369139024987816810607910e+0000,
 117  118  /* B6    */ -1.24409107065868340669112512841820716857910156250e+0000,
 118      -/* B7    */  1.70534231658220414296067701798165217041969299316e+0000,
 119      -/* B8    */  1.99196833784655646937267192697618156671524047852e+0000,
 120      -/* LGH   */  1.5,
 121      -/* LGL   */  0.057304959111036592640075318998107956665325,
      119 +/* B7    */ 1.70534231658220414296067701798165217041969299316e+0000,
      120 +/* B8    */ 1.99196833784655646937267192697618156671524047852e+0000,
      121 +/* LGH   */ 1.5,
      122 +/* LGL   */ 0.057304959111036592640075318998107956665325,
 122  123  };
 123  124  
 124      -#define ONE   P[0]
 125      -#define TWO52 P[1]
 126      -#define LN10V P[2]
 127      -#define ZERO  P[3]
 128      -#define A1    P[4]
 129      -#define A2    P[5]
 130      -#define A3    P[6]
 131      -#define A4    P[7]
 132      -#define A5    P[8]
 133      -#define A6    P[9]
 134      -#define A7    P[10]
 135      -#define A8    P[11]
 136      -#define A9    P[12]
 137      -#define A10   P[13]
 138      -#define A11   P[14]
 139      -#define A12   P[15]
 140      -#define B1    P[16]
 141      -#define B2    P[17]
 142      -#define B3    P[18]
 143      -#define B4    P[19]
 144      -#define B5    P[20]
 145      -#define B6    P[21]
 146      -#define B7    P[22]
 147      -#define B8    P[23]
 148      -#define LGH   P[24]
 149      -#define LGL   P[25]
      125 +#define ONE             P[0]
      126 +#define TWO52           P[1]
      127 +#define LN10V           P[2]
      128 +#define ZERO            P[3]
      129 +#define A1              P[4]
      130 +#define A2              P[5]
      131 +#define A3              P[6]
      132 +#define A4              P[7]
      133 +#define A5              P[8]
      134 +#define A6              P[9]
      135 +#define A7              P[10]
      136 +#define A8              P[11]
      137 +#define A9              P[12]
      138 +#define A10             P[13]
      139 +#define A11             P[14]
      140 +#define A12             P[15]
      141 +#define B1              P[16]
      142 +#define B2              P[17]
      143 +#define B3              P[18]
      144 +#define B4              P[19]
      145 +#define B5              P[20]
      146 +#define B6              P[21]
      147 +#define B7              P[22]
      148 +#define B8              P[23]
      149 +#define LGH             P[24]
      150 +#define LGL             P[25]
 150  151  
 151  152  double
 152      -log2(double x) {
      153 +log2(double x)
      154 +{
 153  155          int i, hx, ix, n, lx;
 154  156  
 155  157          n = 0;
 156      -        hx = ((int *) &x)[HIWORD]; ix = hx & 0x7fffffff;
 157      -        lx = ((int *) &x)[LOWORD];
      158 +        hx = ((int *)&x)[HIWORD];
      159 +        ix = hx & 0x7fffffff;
      160 +        lx = ((int *)&x)[LOWORD];
 158  161  
 159  162          /* subnormal,0,negative,inf,nan */
 160  163          if ((hx + 0x100000) < 0x200000) {
 161  164  #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
 162      -                if (ix >= 0x7ff80000)           /* assumes sparc-like QNaN */
 163      -                        return (x);             /* for Cheetah when x is QNaN */
      165 +                if (ix >= 0x7ff80000) /* assumes sparc-like QNaN */
      166 +                        return (x);   /* for Cheetah when x is QNaN */
 164  167  #endif
 165      -                if (((hx << 1) | lx) == 0)      /* log(0.0) = -inf */
      168 +
      169 +                if (((hx << 1) | lx) == 0)              /* log(0.0) = -inf */
 166  170                          return (A5 / fabs(x));
 167      -                if (hx < 0) {   /* x < 0 */
      171 +
      172 +                if (hx < 0) {                           /* x < 0 */
 168  173                          if (ix >= 0x7ff00000)
 169      -                                return (x - x); /* x is -inf or NaN */
      174 +                                return (x - x);         /* x is -inf or NaN */
 170  175                          else
 171  176                                  return (ZERO / (x - x));
 172  177                  }
      178 +
 173  179                  if (((hx - 0x7ff00000) | lx) == 0)      /* log(inf) = inf */
 174  180                          return (x);
 175      -                if (ix >= 0x7ff00000)           /* log(NaN) = NaN */
      181 +
      182 +                if (ix >= 0x7ff00000)                   /* log(NaN) = NaN */
 176  183                          return (x - x);
      184 +
 177  185                  x *= TWO52;
 178  186                  n = -52;
 179      -                hx = ((int *) &x)[HIWORD]; ix = hx & 0x7fffffff;
 180      -                lx = ((int *) &x)[LOWORD];
      187 +                hx = ((int *)&x)[HIWORD];
      188 +                ix = hx & 0x7fffffff;
      189 +                lx = ((int *)&x)[LOWORD];
 181  190          }
 182  191  
 183  192          /* 0.09375 (0x3fb80000) <= x < 24 (0x40380000) */
 184  193          i = ix >> 19;
      194 +
 185  195          if (i >= 0x7f7 && i <= 0x806) {
 186  196                  /* 0.875 <= x < 1.125 */
 187  197                  if (ix >= 0x3fec0000 && ix < 0x3ff20000) {
 188  198                          double s, z, r, w;
 189      -                        s = x - ONE; z = s * s; r = (A10 * s) * (A11 + s);
      199 +
      200 +                        s = x - ONE;
      201 +                        z = s * s;
      202 +                        r = (A10 * s) * (A11 + s);
 190  203                          w = z * s;
 191      -                        if (((ix << 12) | lx) == 0)
      204 +
      205 +                        if (((ix << 12) | lx) == 0) {
 192  206                                  return (z);
 193      -                        else
 194      -                                return (LGH * s - (LGL * s - ((A1 * z) *
 195      -                                ((A2 + (A3 * s) * (A4 + s)) + w * (A5 + s))) *
 196      -                                (((A6 + s * (A7 + s)) + w * (A8 + s)) *
 197      -                                ((A9 + r) + w * (A12 + s)))));
      207 +                        } else {
      208 +                                return (LGH * s - (LGL * s - ((A1 * z) * ((A2 +
      209 +                                    (A3 * s) * (A4 + s)) + w * (A5 + s))) *
      210 +                                    (((A6 + s * (A7 + s)) + w * (A8 + s)) *
      211 +                                    ((A9 + r) + w * (A12 + s)))));
      212 +                        }
 198  213                  } else {
 199  214                          double *tb, s;
      215 +
 200  216                          i = (ix - 0x3fb80000) >> 15;
 201      -                        tb = (double *) _TBL_log + (i + i + i);
      217 +                        tb = (double *)_TBL_log + (i + i + i);
      218 +
 202  219                          if (((ix << 12) | lx) == 0)     /* 2's power */
 203      -                                return ((double) ((ix >> 20) - 0x3ff));
      220 +                                return ((double)((ix >> 20) - 0x3ff));
      221 +
 204  222                          s = (x - tb[0]) * tb[1];
 205  223                          return (LGH * tb[2] - (LGL * tb[2] - ((B1 * s) *
 206      -                                (B2 + s * (B3 + s))) *
 207      -                                (((B4 + s * B5) + (s * s) * (B6 + s)) *
 208      -                                (B7 + s * (B8 + s)))));
      224 +                            (B2 + s * (B3 + s))) * (((B4 + s * B5) + (s * s) *
      225 +                            (B6 + s)) * (B7 + s * (B8 + s)))));
 209  226                  }
 210  227          } else {
 211  228                  double *tb, dn, s;
 212      -                dn = (double) (n + ((ix >> 20) - 0x3ff));
      229 +
      230 +                dn = (double)(n + ((ix >> 20) - 0x3ff));
 213  231                  ix <<= 12;
      232 +
 214  233                  if ((ix | lx) == 0)
 215  234                          return (dn);
 216      -                i = ((unsigned) ix >> 12) | 0x3ff00000; /* scale x to [1,2) */
 217      -                ((int *) &x)[HIWORD] = i;
      235 +
      236 +                i = ((unsigned)ix >> 12) | 0x3ff00000;  /* scale x to [1,2) */
      237 +                ((int *)&x)[HIWORD] = i;
 218  238                  i = (i - 0x3fb80000) >> 15;
 219      -                tb = (double *) _TBL_log + (i + i + i);
      239 +                tb = (double *)_TBL_log + (i + i + i);
 220  240                  s = (x - tb[0]) * tb[1];
 221      -                return (dn + (tb[2] * LN10V + ((B1 * s) *
 222      -                        (B2 + s * (B3 + s))) *
 223      -                        (((B4 + s * B5) + (s * s) * (B6 + s)) *
 224      -                        (B7 + s * (B8 + s)))));
      241 +                return (dn + (tb[2] * LN10V + ((B1 * s) * (B2 + s * (B3 + s))) *
      242 +                    (((B4 + s * B5) + (s * s) * (B6 + s)) *
      243 +                    (B7 + s * (B8 + s)))));
 225  244          }
 226  245  }
    
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX