1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __log2 = log2 32 33 34 /* 35 * log2(x) = log(x)/log2 36 * 37 * Base on Table look-up algorithm with product polynomial 38 * approximation for log(x). 39 * 40 * By K.C. Ng, Nov 29, 2004 41 * 42 * (a). For x in [1-0.125, 1+0.125], from log.c we have 43 * log(x) = f + ((a1*f^2) * 44 * ((a2 + (a3*f)*(a4+f)) + (f^3)*(a5+f))) * 45 * (((a6 + f*(a7+f)) + (f^3)*(a8+f)) * 46 * ((a9 + (a10*f)*(a11+f)) + (f^3)*(a12+f))) 47 * where f = x - 1. 48 * (i) modify a1 <- a1 / log2 49 * (ii) 1/log2 = 1.4426950408889634... 50 * = 1.5 - 0.057304959... (4 bit shift) 51 * Let lv = 1.5 - 1/log2, then 52 * lv = 0.057304959111036592640075318998107956665325, 53 * (iii) f*1.5 is exact because f has 3 trailing zero. 54 * (iv) Thus, log2(x) = f*1.5 - (lv*f - PPoly) 55 * 56 * (b). For 0.09375 <= x < 24 57 * Let j = (ix - 0x3fb80000) >> 15. Look up Y[j], 1/Y[j], and log(Y[j]) 58 * from _TBL_log.c. Then 59 * log2(x) = log2(Y[j]) + log2(1 + (x-Y[j])*(1/Y[j])) 60 * = log(Y[j])(1/log2) + log2(1 + s) 61 * where 62 * s = (x-Y[j])*(1/Y[j]) 63 * From log.c, we have log(1+s) = 64 * 2 2 2 65 * (b s) (b + b s + s ) [b + b s + s (b + s)] (b + b s + s ) 66 * 1 2 3 4 5 6 7 8 67 * 68 * By setting b1 <- b1/log2, we have 69 * log2(x) = 1.5 * T - (lv * T - POLY(s)) 70 * 71 * (c). Otherwise, get "n", the exponent of x, and then normalize x to 72 * z in [1,2). Then similar to (b) find a Y[i] that matches z to 5.5 73 * significant bits. Then 74 * log2(x) = n + log2(z). 75 * 76 * Special cases: 77 * log2(x) is NaN with signal if x < 0 (including -INF) ; 78 * log2(+INF) is +INF; log2(0) is -INF with signal; 79 * log2(NaN) is that NaN with no signal. 80 * 81 * Maximum error observed: less than 0.84 ulp 82 * 83 * Constants: 84 * The hexadecimal values are the intended ones for the following constants. 85 * The decimal values may be used, provided that the compiler will convert 86 * from decimal to binary accurately enough to produce the hexadecimal values 87 * shown. 88 */ 89 90 #include "libm.h" 91 #include "libm_protos.h" 92 93 extern const double _TBL_log[]; 94 95 static const double P[] = { 96 /* ONE */ 97 1.0, 98 /* TWO52 */ 4503599627370496.0, 99 /* LN10V */ 1.4426950408889634073599246810018920433347, /* 1/log10 */ 100 /* ZERO */ 0.0, 101 /* A1 */ -9.6809362455249638217841932228967194640116e-02, 102 /* A2 */ 1.99628461483039965074226529395673424005508422852e+0000, 103 /* A3 */ 2.26812367662950720159642514772713184356689453125e+0000, 104 /* A4 */ -9.05030639084976384900471657601883634924888610840e-0001, 105 /* A5 */ -1.48275767132434044270894446526654064655303955078e+0000, 106 /* A6 */ 1.88158320939722756293122074566781520843505859375e+0000, 107 /* A7 */ 1.83309386046986411145098827546462416648864746094e+0000, 108 /* A8 */ 1.24847063988317086291601754055591300129890441895e+0000, 109 /* A9 */ 1.98372421445537705508854742220137268304824829102e+0000, 110 /* A10 */ -3.94711735767898475035764249696512706577777862549e-0001, 111 /* A11 */ 3.07890395362954372160402272129431366920471191406e+0000, 112 /* A12 */ -9.60099585275022149311041630426188930869102478027e-0001, 113 /* B1 */ -1.8039695622547469514898963204616532885451e-01, 114 /* B2 */ 1.87161713283355151891381127914642725337613123482e+0000, 115 /* B3 */ -1.89082956295731507978530316904652863740921020508e+0000, 116 /* B4 */ -2.50562891673640253387134180229622870683670043945e+0000, 117 /* B5 */ 1.64822828085258366037635369139024987816810607910e+0000, 118 /* B6 */ -1.24409107065868340669112512841820716857910156250e+0000, 119 /* B7 */ 1.70534231658220414296067701798165217041969299316e+0000, 120 /* B8 */ 1.99196833784655646937267192697618156671524047852e+0000, 121 /* LGH */ 1.5, 122 /* LGL */ 0.057304959111036592640075318998107956665325, 123 }; 124 125 #define ONE P[0] 126 #define TWO52 P[1] 127 #define LN10V P[2] 128 #define ZERO P[3] 129 #define A1 P[4] 130 #define A2 P[5] 131 #define A3 P[6] 132 #define A4 P[7] 133 #define A5 P[8] 134 #define A6 P[9] 135 #define A7 P[10] 136 #define A8 P[11] 137 #define A9 P[12] 138 #define A10 P[13] 139 #define A11 P[14] 140 #define A12 P[15] 141 #define B1 P[16] 142 #define B2 P[17] 143 #define B3 P[18] 144 #define B4 P[19] 145 #define B5 P[20] 146 #define B6 P[21] 147 #define B7 P[22] 148 #define B8 P[23] 149 #define LGH P[24] 150 #define LGL P[25] 151 152 double 153 log2(double x) 154 { 155 int i, hx, ix, n, lx; 156 157 n = 0; 158 hx = ((int *)&x)[HIWORD]; 159 ix = hx & 0x7fffffff; 160 lx = ((int *)&x)[LOWORD]; 161 162 /* subnormal,0,negative,inf,nan */ 163 if ((hx + 0x100000) < 0x200000) { 164 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN) 165 if (ix >= 0x7ff80000) /* assumes sparc-like QNaN */ 166 return (x); /* for Cheetah when x is QNaN */ 167 #endif 168 169 if (((hx << 1) | lx) == 0) /* log(0.0) = -inf */ 170 return (A5 / fabs(x)); 171 172 if (hx < 0) { /* x < 0 */ 173 if (ix >= 0x7ff00000) 174 return (x - x); /* x is -inf or NaN */ 175 else 176 return (ZERO / (x - x)); 177 } 178 179 if (((hx - 0x7ff00000) | lx) == 0) /* log(inf) = inf */ 180 return (x); 181 182 if (ix >= 0x7ff00000) /* log(NaN) = NaN */ 183 return (x - x); 184 185 x *= TWO52; 186 n = -52; 187 hx = ((int *)&x)[HIWORD]; 188 ix = hx & 0x7fffffff; 189 lx = ((int *)&x)[LOWORD]; 190 } 191 192 /* 0.09375 (0x3fb80000) <= x < 24 (0x40380000) */ 193 i = ix >> 19; 194 195 if (i >= 0x7f7 && i <= 0x806) { 196 /* 0.875 <= x < 1.125 */ 197 if (ix >= 0x3fec0000 && ix < 0x3ff20000) { 198 double s, z, r, w; 199 200 s = x - ONE; 201 z = s * s; 202 r = (A10 * s) * (A11 + s); 203 w = z * s; 204 205 if (((ix << 12) | lx) == 0) { 206 return (z); 207 } else { 208 return (LGH * s - (LGL * s - ((A1 * z) * ((A2 + 209 (A3 * s) * (A4 + s)) + w * (A5 + s))) * 210 (((A6 + s * (A7 + s)) + w * (A8 + s)) * 211 ((A9 + r) + w * (A12 + s))))); 212 } 213 } else { 214 double *tb, s; 215 216 i = (ix - 0x3fb80000) >> 15; 217 tb = (double *)_TBL_log + (i + i + i); 218 219 if (((ix << 12) | lx) == 0) /* 2's power */ 220 return ((double)((ix >> 20) - 0x3ff)); 221 222 s = (x - tb[0]) * tb[1]; 223 return (LGH * tb[2] - (LGL * tb[2] - ((B1 * s) * 224 (B2 + s * (B3 + s))) * (((B4 + s * B5) + (s * s) * 225 (B6 + s)) * (B7 + s * (B8 + s))))); 226 } 227 } else { 228 double *tb, dn, s; 229 230 dn = (double)(n + ((ix >> 20) - 0x3ff)); 231 ix <<= 12; 232 233 if ((ix | lx) == 0) 234 return (dn); 235 236 i = ((unsigned)ix >> 12) | 0x3ff00000; /* scale x to [1,2) */ 237 ((int *)&x)[HIWORD] = i; 238 i = (i - 0x3fb80000) >> 15; 239 tb = (double *)_TBL_log + (i + i + i); 240 s = (x - tb[0]) * tb[1]; 241 return (dn + (tb[2] * LN10V + ((B1 * s) * (B2 + s * (B3 + s))) * 242 (((B4 + s * B5) + (s * s) * (B6 + s)) * 243 (B7 + s * (B8 + s))))); 244 } 245 }