1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __log1p = log1p 32 33 34 /* 35 * Method : 36 * 1. Argument Reduction: find k and f such that 37 * 1+x = 2^k * (1+f), 38 * where sqrt(2)/2 < 1+f < sqrt(2) . 39 * 40 * Note. If k=0, then f=x is exact. However, if k != 0, then f 41 * may not be representable exactly. In that case, a correction 42 * term is need. Let u=1+x rounded. Let c = (1+x)-u, then 43 * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), 44 * and add back the correction term c/u. 45 * (Note: when x > 2**53, one can simply return log(x)) 46 * 47 * 2. Approximation of log1p(f). 48 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) 49 * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 50 * = 2s + s*R 51 * We use a special Reme algorithm on [0,0.1716] to generate 52 * a polynomial of degree 14 to approximate R The maximum error 53 * of this polynomial approximation is bounded by 2**-58.45. In 54 * other words, 55 * 2 4 6 8 10 12 14 56 * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s 57 * (the values of Lp1 to Lp7 are listed in the program) 58 * and 59 * | 2 14 | -58.45 60 * | Lp1*s +...+Lp7*s - R(z) | <= 2 61 * | | 62 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. 63 * In order to guarantee error in log below 1ulp, we compute log 64 * by 65 * log1p(f) = f - (hfsq - s*(hfsq+R)). 66 * 67 * 3. Finally, log1p(x) = k*ln2 + log1p(f). 68 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) 69 * Here ln2 is splitted into two floating point number: 70 * ln2_hi + ln2_lo, 71 * where n*ln2_hi is always exact for |n| < 2000. 72 * 73 * Special cases: 74 * log1p(x) is NaN with signal if x < -1 (including -INF) ; 75 * log1p(+INF) is +INF; log1p(-1) is -INF with signal; 76 * log1p(NaN) is that NaN with no signal. 77 * 78 * Accuracy: 79 * according to an error analysis, the error is always less than 80 * 1 ulp (unit in the last place). 81 * 82 * Constants: 83 * The hexadecimal values are the intended ones for the following 84 * constants. The decimal values may be used, provided that the 85 * compiler will convert from decimal to binary accurately enough 86 * to produce the hexadecimal values shown. 87 * 88 * Note: Assuming log() return accurate answer, the following 89 * algorithm can be used to compute log1p(x) to within a few ULP: 90 * 91 * u = 1+x; 92 * if (u == 1.0) return x ; else 93 * return log(u)*(x/(u-1.0)); 94 * 95 * See HP-15C Advanced Functions Handbook, p.193. 96 */ 97 98 #include "libm.h" 99 100 static const double xxx[] = { 101 /* ln2_hi */ 102 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ 103 /* ln2_lo */ 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ 104 /* two54 */ 1.80143985094819840000e+16, /* 43500000 00000000 */ 105 /* Lp1 */ 6.666666666666735130e-01, /* 3FE55555 55555593 */ 106 /* Lp2 */ 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ 107 /* Lp3 */ 2.857142874366239149e-01, /* 3FD24924 94229359 */ 108 /* Lp4 */ 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ 109 /* Lp5 */ 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ 110 /* Lp6 */ 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ 111 /* Lp7 */ 1.479819860511658591e-01, /* 3FC2F112 DF3E5244 */ 112 /* zero */ 0.0 113 }; 114 115 #define ln2_hi xxx[0] 116 #define ln2_lo xxx[1] 117 #define two54 xxx[2] 118 #define Lp1 xxx[3] 119 #define Lp2 xxx[4] 120 #define Lp3 xxx[5] 121 #define Lp4 xxx[6] 122 #define Lp5 xxx[7] 123 #define Lp6 xxx[8] 124 #define Lp7 xxx[9] 125 #define zero xxx[10] 126 127 double 128 log1p(double x) 129 { 130 double hfsq, f, c = 0.0, s, z, R, u; 131 int k, hx, hu, ax; 132 133 hx = ((int *)&x)[HIWORD]; /* high word of x */ 134 ax = hx & 0x7fffffff; 135 136 if (ax >= 0x7ff00000) { /* x is inf or nan */ 137 if (((hx - 0xfff00000) | ((int *)&x)[LOWORD]) == 0) /* -inf */ 138 return (_SVID_libm_err(x, x, 44)); 139 140 return (x * x); 141 } 142 143 k = 1; 144 145 if (hx < 0x3FDA827A) { /* x < 0.41422 */ 146 if (ax >= 0x3ff00000) /* x <= -1.0 */ 147 return (_SVID_libm_err(x, x, x == -1.0 ? 43 : 44)); 148 149 if (ax < 0x3e200000) { /* |x| < 2**-29 */ 150 if (two54 + x > zero && /* raise inexact */ 151 ax < 0x3c900000) /* |x| < 2**-54 */ 152 return (x); 153 else 154 return (x - x * x * 0.5); 155 } 156 157 if (hx > 0 || hx <= (int)0xbfd2bec3) { /* -0.2929<x<0.41422 */ 158 k = 0; 159 f = x; 160 hu = 1; 161 } 162 } 163 164 /* We will initialize 'c' here. */ 165 if (k != 0) { 166 if (hx < 0x43400000) { 167 u = 1.0 + x; 168 hu = ((int *)&u)[HIWORD]; /* high word of u */ 169 k = (hu >> 20) - 1023; 170 171 /* 172 * correction term 173 */ 174 c = k > 0 ? 1.0 - (u - x) : x - (u - 1.0); 175 c /= u; 176 } else { 177 u = x; 178 hu = ((int *)&u)[HIWORD]; /* high word of u */ 179 k = (hu >> 20) - 1023; 180 c = 0; 181 } 182 183 hu &= 0x000fffff; 184 185 if (hu < 0x6a09e) { /* normalize u */ 186 ((int *)&u)[HIWORD] = hu | 0x3ff00000; 187 } else { /* normalize u/2 */ 188 k += 1; 189 ((int *)&u)[HIWORD] = hu | 0x3fe00000; 190 hu = (0x00100000 - hu) >> 2; 191 } 192 193 f = u - 1.0; 194 } 195 196 hfsq = 0.5 * f * f; 197 198 if (hu == 0) { /* |f| < 2**-20 */ 199 if (f == zero) { 200 if (k == 0) 201 return (zero); 202 203 /* We already initialized 'c' before, when (k != 0) */ 204 c += k * ln2_lo; 205 return (k * ln2_hi + c); 206 } 207 208 R = hfsq * (1.0 - 0.66666666666666666 * f); 209 210 if (k == 0) 211 return (f - R); 212 213 return (k * ln2_hi - ((R - (k * ln2_lo + c)) - f)); 214 } 215 216 s = f / (2.0 + f); 217 z = s * s; 218 R = z * (Lp1 + z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + 219 z * Lp7)))))); 220 221 if (k == 0) 222 return (f - (hfsq - s * (hfsq + R))); 223 224 return (k * ln2_hi - 225 ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f)); 226 }