1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 */
24 /*
25 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
26 * Use is subject to license terms.
27 */
28
29 #pragma weak __log10 = log10
30
31 /* INDENT OFF */
32 /*
33 * log10(x) = log(x)/log10
34 *
35 * Base on Table look-up algorithm with product polynomial
36 * approximation for log(x).
37 *
38 * By K.C. Ng, Nov 29, 2004
39 *
40 * (a). For x in [1-0.125, 1+0.125], from log.c we have
41 * log(x) = f + ((a1*f^2) *
42 * ((a2 + (a3*f)*(a4+f)) + (f^3)*(a5+f))) *
43 * (((a6 + f*(a7+f)) + (f^3)*(a8+f)) *
44 * ((a9 + (a10*f)*(a11+f)) + (f^3)*(a12+f)))
45 * where f = x - 1.
46 * (i) modify a1 <- a1 / log10
47 * (ii) 1/log10 = 0.4342944819...
48 * = 0.4375 - 0.003205518... (7 bit shift)
49 * Let lgv = 0.4375 - 1/log10, then
50 * lgv = 0.003205518096748172348871081083395...,
51 * (iii) f*0.4375 is exact because f has 3 trailing zero.
68 *
69 * (c). Otherwise, get "n", the exponent of x, and then normalize x to
70 * z in [1,2). Then similar to (b) find a Y[i] that matches z to 5.5
71 * significant bits. Then
72 * log(x) = n*ln2 + log(Y[i]) + log(z/Y[i]).
73 * log10(x) = n*(ln2/ln10) + log10(z).
74 *
75 * Special cases:
76 * log10(x) is NaN with signal if x < 0 (including -INF) ;
77 * log10(+INF) is +INF; log10(0) is -INF with signal;
78 * log10(NaN) is that NaN with no signal.
79 *
80 * Maximum error observed: less than 0.89 ulp
81 *
82 * Constants:
83 * The hexadecimal values are the intended ones for the following constants.
84 * The decimal values may be used, provided that the compiler will convert
85 * from decimal to binary accurately enough to produce the hexadecimal values
86 * shown.
87 */
88 /* INDENT ON */
89
90 #include "libm.h"
91
92 extern const double _TBL_log[];
93
94 static const double P[] = {
95 /* ONE */ 1.0,
96 /* TWO52 */ 4503599627370496.0,
97 /* LNAHI */ 3.01029995607677847147e-01, /* 3FD34413 50900000 */
98 /* LNALO */ 5.63033480667509769841e-11, /* 3DCEF3FD E623E256 */
99 /* A1 */ -2.9142521960136582507385480707044582802184e-02,
100 /* A2 */ 1.99628461483039965074226529395673424005508422852e+0000,
101 /* A3 */ 2.26812367662950720159642514772713184356689453125e+0000,
102 /* A4 */ -9.05030639084976384900471657601883634924888610840e-0001,
103 /* A5 */ -1.48275767132434044270894446526654064655303955078e+0000,
104 /* A6 */ 1.88158320939722756293122074566781520843505859375e+0000,
105 /* A7 */ 1.83309386046986411145098827546462416648864746094e+0000,
106 /* A8 */ 1.24847063988317086291601754055591300129890441895e+0000,
107 /* A9 */ 1.98372421445537705508854742220137268304824829102e+0000,
108 /* A10 */ -3.94711735767898475035764249696512706577777862549e-0001,
109 /* A11 */ 3.07890395362954372160402272129431366920471191406e+0000,
110 /* A12 */ -9.60099585275022149311041630426188930869102478027e-0001,
111 /* B1 */ -5.4304894950350052960838096752491540286689e-02,
112 /* B2 */ 1.87161713283355151891381127914642725337613123482e+0000,
113 /* B3 */ -1.89082956295731507978530316904652863740921020508e+0000,
114 /* B4 */ -2.50562891673640253387134180229622870683670043945e+0000,
115 /* B5 */ 1.64822828085258366037635369139024987816810607910e+0000,
133 #define A6 P[9]
134 #define A7 P[10]
135 #define A8 P[11]
136 #define A9 P[12]
137 #define A10 P[13]
138 #define A11 P[14]
139 #define A12 P[15]
140 #define B1 P[16]
141 #define B2 P[17]
142 #define B3 P[18]
143 #define B4 P[19]
144 #define B5 P[20]
145 #define B6 P[21]
146 #define B7 P[22]
147 #define B8 P[23]
148 #define LGH P[24]
149 #define LGL P[25]
150 #define LG10V P[26]
151
152 double
153 log10(double x) {
154 double *tb, dn, dn1, s, z, r, w;
155 int i, hx, ix, n, lx;
156
157 n = 0;
158 hx = ((int *)&x)[HIWORD];
159 ix = hx & 0x7fffffff;
160 lx = ((int *)&x)[LOWORD];
161
162 /* subnormal,0,negative,inf,nan */
163 if ((hx + 0x100000) < 0x200000) {
164 if (ix > 0x7ff00000 || (ix == 0x7ff00000 && lx != 0)) /* nan */
165 return (x * x);
166 if (((hx << 1) | lx) == 0) /* zero */
167 return (_SVID_libm_err(x, x, 18));
168 if (hx < 0) /* negative */
169 return (_SVID_libm_err(x, x, 19));
170 if (((hx - 0x7ff00000) | lx) == 0) /* +inf */
171 return (x);
172
173 /* x must be positive and subnormal */
174 x *= TWO52;
175 n = -52;
176 ix = ((int *)&x)[HIWORD];
177 lx = ((int *)&x)[LOWORD];
178 }
179
180 i = ix >> 19;
181 if (i >= 0x7f7 && i <= 0x806) {
182 /* 0.09375 (0x3fb80000) <= x < 24 (0x40380000) */
183 if (ix >= 0x3fec0000 && ix < 0x3ff20000) {
184 /* 0.875 <= x < 1.125 */
185 s = x - ONE;
186 z = s * s;
187 if (((ix - 0x3ff00000) | lx) == 0) /* x = 1 */
188 return (z);
189 r = (A10 * s) * (A11 + s);
190 w = z * s;
191 return (LGH * s - (LGL * s - ((A1 * z) *
192 ((A2 + (A3 * s) * (A4 + s)) + w * (A5 + s))) *
193 (((A6 + s * (A7 + s)) + w * (A8 + s)) *
194 ((A9 + r) + w * (A12 + s)))));
195 } else {
196 i = (ix - 0x3fb80000) >> 15;
197 tb = (double *)_TBL_log + (i + i + i);
198 s = (x - tb[0]) * tb[1];
199 return (LGH * tb[2] - (LGL * tb[2] - ((B1 * s) *
200 (B2 + s * (B3 + s))) *
201 (((B4 + s * B5) + (s * s) * (B6 + s)) *
202 (B7 + s * (B8 + s)))));
203 }
204 } else {
205 dn = (double)(n + ((ix >> 20) - 0x3ff));
206 dn1 = dn * LNAHI;
207 i = (ix & 0x000fffff) | 0x3ff00000; /* scale x to [1,2] */
208 ((int *)&x)[HIWORD] = i;
209 i = (i - 0x3fb80000) >> 15;
210 tb = (double *)_TBL_log + (i + i + i);
211 s = (x - tb[0]) * tb[1];
212 dn = dn * LNALO + tb[2] * LG10V;
213 return (dn1 + (dn + ((B1 * s) *
214 (B2 + s * (B3 + s))) *
215 (((B4 + s * B5) + (s * s) * (B6 + s)) *
216 (B7 + s * (B8 + s)))));
217 }
218 }
|
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25
26 /*
27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
28 * Use is subject to license terms.
29 */
30
31 #pragma weak __log10 = log10
32
33
34 /*
35 * log10(x) = log(x)/log10
36 *
37 * Base on Table look-up algorithm with product polynomial
38 * approximation for log(x).
39 *
40 * By K.C. Ng, Nov 29, 2004
41 *
42 * (a). For x in [1-0.125, 1+0.125], from log.c we have
43 * log(x) = f + ((a1*f^2) *
44 * ((a2 + (a3*f)*(a4+f)) + (f^3)*(a5+f))) *
45 * (((a6 + f*(a7+f)) + (f^3)*(a8+f)) *
46 * ((a9 + (a10*f)*(a11+f)) + (f^3)*(a12+f)))
47 * where f = x - 1.
48 * (i) modify a1 <- a1 / log10
49 * (ii) 1/log10 = 0.4342944819...
50 * = 0.4375 - 0.003205518... (7 bit shift)
51 * Let lgv = 0.4375 - 1/log10, then
52 * lgv = 0.003205518096748172348871081083395...,
53 * (iii) f*0.4375 is exact because f has 3 trailing zero.
70 *
71 * (c). Otherwise, get "n", the exponent of x, and then normalize x to
72 * z in [1,2). Then similar to (b) find a Y[i] that matches z to 5.5
73 * significant bits. Then
74 * log(x) = n*ln2 + log(Y[i]) + log(z/Y[i]).
75 * log10(x) = n*(ln2/ln10) + log10(z).
76 *
77 * Special cases:
78 * log10(x) is NaN with signal if x < 0 (including -INF) ;
79 * log10(+INF) is +INF; log10(0) is -INF with signal;
80 * log10(NaN) is that NaN with no signal.
81 *
82 * Maximum error observed: less than 0.89 ulp
83 *
84 * Constants:
85 * The hexadecimal values are the intended ones for the following constants.
86 * The decimal values may be used, provided that the compiler will convert
87 * from decimal to binary accurately enough to produce the hexadecimal values
88 * shown.
89 */
90
91 #include "libm.h"
92
93 extern const double _TBL_log[];
94
95 static const double P[] = {
96 /* ONE */
97 1.0,
98 /* TWO52 */ 4503599627370496.0,
99 /* LNAHI */ 3.01029995607677847147e-01, /* 3FD34413 50900000 */
100 /* LNALO */ 5.63033480667509769841e-11, /* 3DCEF3FD E623E256 */
101 /* A1 */ -2.9142521960136582507385480707044582802184e-02,
102 /* A2 */ 1.99628461483039965074226529395673424005508422852e+0000,
103 /* A3 */ 2.26812367662950720159642514772713184356689453125e+0000,
104 /* A4 */ -9.05030639084976384900471657601883634924888610840e-0001,
105 /* A5 */ -1.48275767132434044270894446526654064655303955078e+0000,
106 /* A6 */ 1.88158320939722756293122074566781520843505859375e+0000,
107 /* A7 */ 1.83309386046986411145098827546462416648864746094e+0000,
108 /* A8 */ 1.24847063988317086291601754055591300129890441895e+0000,
109 /* A9 */ 1.98372421445537705508854742220137268304824829102e+0000,
110 /* A10 */ -3.94711735767898475035764249696512706577777862549e-0001,
111 /* A11 */ 3.07890395362954372160402272129431366920471191406e+0000,
112 /* A12 */ -9.60099585275022149311041630426188930869102478027e-0001,
113 /* B1 */ -5.4304894950350052960838096752491540286689e-02,
114 /* B2 */ 1.87161713283355151891381127914642725337613123482e+0000,
115 /* B3 */ -1.89082956295731507978530316904652863740921020508e+0000,
116 /* B4 */ -2.50562891673640253387134180229622870683670043945e+0000,
117 /* B5 */ 1.64822828085258366037635369139024987816810607910e+0000,
135 #define A6 P[9]
136 #define A7 P[10]
137 #define A8 P[11]
138 #define A9 P[12]
139 #define A10 P[13]
140 #define A11 P[14]
141 #define A12 P[15]
142 #define B1 P[16]
143 #define B2 P[17]
144 #define B3 P[18]
145 #define B4 P[19]
146 #define B5 P[20]
147 #define B6 P[21]
148 #define B7 P[22]
149 #define B8 P[23]
150 #define LGH P[24]
151 #define LGL P[25]
152 #define LG10V P[26]
153
154 double
155 log10(double x)
156 {
157 double *tb, dn, dn1, s, z, r, w;
158 int i, hx, ix, n, lx;
159
160 n = 0;
161 hx = ((int *)&x)[HIWORD];
162 ix = hx & 0x7fffffff;
163 lx = ((int *)&x)[LOWORD];
164
165 /* subnormal,0,negative,inf,nan */
166 if ((hx + 0x100000) < 0x200000) {
167 if (ix > 0x7ff00000 || (ix == 0x7ff00000 && lx != 0)) /* nan */
168 return (x * x);
169
170 if (((hx << 1) | lx) == 0) /* zero */
171 return (_SVID_libm_err(x, x, 18));
172
173 if (hx < 0) /* negative */
174 return (_SVID_libm_err(x, x, 19));
175
176 if (((hx - 0x7ff00000) | lx) == 0) /* +inf */
177 return (x);
178
179 /* x must be positive and subnormal */
180 x *= TWO52;
181 n = -52;
182 ix = ((int *)&x)[HIWORD];
183 lx = ((int *)&x)[LOWORD];
184 }
185
186 i = ix >> 19;
187
188 if (i >= 0x7f7 && i <= 0x806) {
189 /* 0.09375 (0x3fb80000) <= x < 24 (0x40380000) */
190 if (ix >= 0x3fec0000 && ix < 0x3ff20000) {
191 /* 0.875 <= x < 1.125 */
192 s = x - ONE;
193 z = s * s;
194
195 if (((ix - 0x3ff00000) | lx) == 0) /* x = 1 */
196 return (z);
197
198 r = (A10 * s) * (A11 + s);
199 w = z * s;
200 return (LGH * s - (LGL * s - ((A1 * z) *
201 ((A2 + (A3 * s) * (A4 + s)) + w * (A5 + s))) *
202 (((A6 + s * (A7 + s)) + w * (A8 + s)) *
203 ((A9 + r) + w * (A12 + s)))));
204 } else {
205 i = (ix - 0x3fb80000) >> 15;
206 tb = (double *)_TBL_log + (i + i + i);
207 s = (x - tb[0]) * tb[1];
208 return (LGH * tb[2] - (LGL * tb[2] - ((B1 * s) *
209 (B2 + s * (B3 + s))) * (((B4 + s * B5) + (s * s) *
210 (B6 + s)) * (B7 + s * (B8 + s)))));
211 }
212 } else {
213 dn = (double)(n + ((ix >> 20) - 0x3ff));
214 dn1 = dn * LNAHI;
215 i = (ix & 0x000fffff) | 0x3ff00000; /* scale x to [1,2] */
216 ((int *)&x)[HIWORD] = i;
217 i = (i - 0x3fb80000) >> 15;
218 tb = (double *)_TBL_log + (i + i + i);
219 s = (x - tb[0]) * tb[1];
220 dn = dn * LNALO + tb[2] * LG10V;
221 return (dn1 + (dn + ((B1 * s) * (B2 + s * (B3 + s))) *
222 (((B4 + s * B5) + (s * s) * (B6 + s)) *
223 (B7 + s * (B8 + s)))));
224 }
225 }
|