Print this page
11210 libm should be cstyle(1ONBLD) clean

@@ -20,10 +20,11 @@
  */
 
 /*
  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  */
+
 /*
  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  * Use is subject to license terms.
  */
 

@@ -84,28 +85,36 @@
 
         if (n < 0) {
                 n = -n;
                 x = -x;
         }
+
         if (isnan(x))
-                return (x*x);   /* + -> * for Cheetah */
-        if (!((int)_lib_version == libm_ieee ||
-            (__xpg6 & _C99SUSv3_math_errexcept) != 0)) {
+                return (x * x);         /* + -> * for Cheetah */
+
+        if (!((int)_lib_version == libm_ieee || (__xpg6 &
+            _C99SUSv3_math_errexcept) != 0)) {
                 if (fabs(x) > X_TLOSS)
                         return (_SVID_libm_err(on, ox, 38));
         }
+
         if (n == 0)
                 return (j0(x));
+
         if (n == 1)
                 return (j1(x));
-        if ((n&1) == 0)
+
+        if ((n & 1) == 0)
                 sgn = 0;                        /* even n */
         else
                 sgn = signbit(x);       /* old n  */
+
         x = fabs(x);
-        if (x == zero||!finite(x)) b = zero;
-        else if ((GENERIC)n <= x) {
+
+        if (x == zero || !finite(x)) {
+                b = zero;
+        } else if ((GENERIC)n <= x) {
                                         /*
                                          * Safe to use
                                          *  J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
                                          */
                 if (x > 1.0e91) {

@@ -121,42 +130,46 @@
                                  *         0     s-c             c+s
                                  *         1    -s-c            -c+s
                                  *         2    -s+c            -c-s
                                  *         3     s+c             c-s
                                  */
-                        switch (n&3) {
+                        switch (n & 3) {
                         case 0:
-                                temp =  cos(x)+sin(x);
+                                temp = cos(x) + sin(x);
                                 break;
                         case 1:
-                                temp = -cos(x)+sin(x);
+                                temp = -cos(x) + sin(x);
                                 break;
                         case 2:
-                                temp = -cos(x)-sin(x);
+                                temp = -cos(x) - sin(x);
                                 break;
                         case 3:
-                                temp =  cos(x)-sin(x);
+                                temp = cos(x) - sin(x);
                                 break;
                         }
-                        b = invsqrtpi*temp/sqrt(x);
+
+                        b = invsqrtpi * temp / sqrt(x);
                 } else {
                         a = j0(x);
                         b = j1(x);
+
                         for (i = 1; i < n; i++) {
                                 temp = b;
                                 /* avoid underflow */
-                                b = b*((GENERIC)(i+i)/x) - a;
+                                b = b * ((GENERIC)(i + i) / x) - a;
                                 a = temp;
                         }
                 }
         } else {
                 if (x < 1e-9) { /* use J(n,x) = 1/n!*(x/2)^n */
-                        b = pow(0.5*x, (GENERIC) n);
+                        b = pow(0.5 * x, (GENERIC)n);
+
                         if (b != zero) {
                                 for (a = one, i = 1; i <= n; i++)
                                         a *= (GENERIC)i;
-                                b = b/a;
+
+                                b = b / a;
                         }
                 } else {
                         /*
                          * use backward recurrence
                          *                      x         x^2     x^2

@@ -188,29 +201,35 @@
                          */
                         /* determine k */
                         GENERIC t, v;
                         double q0, q1, h, tmp;
                         int k, m;
-                        w  = (n+n)/(double)x;
-                        h = 2.0/(double)x;
+
+                        w = (n + n) / (double)x;
+                        h = 2.0 / (double)x;
                         q0 = w;
                         z = w + h;
-                        q1 = w*z - 1.0;
+                        q1 = w * z - 1.0;
                         k = 1;
 
                         while (q1 < 1.0e9) {
                                 k += 1;
                                 z += h;
-                                tmp = z*q1 - q0;
+                                tmp = z * q1 - q0;
                                 q0 = q1;
                                 q1 = tmp;
                         }
-                        m = n+n;
-                        for (t = zero, i = 2*(n+k); i >= m; i -= 2)
-                                t = one/(i/x-t);
+
+                        m = n + n;
+
+                        for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
+                                t = one / (i / x - t);
+
                         a = t;
                         b = one;
+
+                        /* BEGIN CSTYLED */
                         /*
                          * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
                          * hence, if n*(log(2n/x)) > ...
                          *  single:
                          *    8.8722839355e+01

@@ -219,34 +238,39 @@
                          *  long double:
                          *    1.1356523406294143949491931077970765006170e+04
                          * then recurrent value may overflow and the result is
                          * likely underflow to zero
                          */
+                        /* END CSTYLED */
                         tmp = n;
-                        v = two/x;
-                        tmp = tmp*log(fabs(v*tmp));
+                        v = two / x;
+                        tmp = tmp * log(fabs(v * tmp));
+
                         if (tmp < 7.09782712893383973096e+02) {
-                                for (i = n-1; i > 0; i--) {
+                                for (i = n - 1; i > 0; i--) {
                                         temp = b;
-                                        b = ((i+i)/x)*b - a;
+                                        b = ((i + i) / x) * b - a;
                                         a = temp;
                                 }
                         } else {
-                                for (i = n-1; i > 0; i--) {
+                                for (i = n - 1; i > 0; i--) {
                                         temp = b;
-                                        b = ((i+i)/x)*b - a;
+                                        b = ((i + i) / x) * b - a;
                                         a = temp;
+
                                         if (b > 1e100) {
                                                 a /= b;
                                                 t /= b;
                                                 b  = 1.0;
                                         }
                                 }
                         }
-                        b = (t*j0(x)/b);
+
+                        b = (t * j0(x) / b);
                 }
         }
+
         if (sgn != 0)
                 return (-b);
         else
                 return (b);
 }

@@ -258,35 +282,45 @@
         int sign;
         GENERIC a, b, temp = 0, ox, on;
 
         ox = x;
         on = (GENERIC)n;
+
         if (isnan(x))
-                return (x*x);   /* + -> * for Cheetah */
+                return (x * x);         /* + -> * for Cheetah */
+
         if (x <= zero) {
                 if (x == zero) {
                         /* return -one/zero; */
                         return (_SVID_libm_err((GENERIC)n, x, 12));
                 } else {
                         /* return zero/zero; */
                         return (_SVID_libm_err((GENERIC)n, x, 13));
                 }
         }
-        if (!((int)_lib_version == libm_ieee ||
-            (__xpg6 & _C99SUSv3_math_errexcept) != 0)) {
+
+        if (!((int)_lib_version == libm_ieee || (__xpg6 &
+            _C99SUSv3_math_errexcept) != 0)) {
                 if (x > X_TLOSS)
                         return (_SVID_libm_err(on, ox, 39));
         }
+
         sign = 1;
+
         if (n < 0) {
                 n = -n;
-                if ((n&1) == 1) sign = -1;
+
+                if ((n & 1) == 1)
+                        sign = -1;
         }
+
         if (n == 0)
                 return (y0(x));
+
         if (n == 1)
-                return (sign*y1(x));
+                return (sign * y1(x));
+
         if (!finite(x))
                 return (zero);
 
         if (x > 1.0e91) {
                                 /*

@@ -301,40 +335,45 @@
                                  *       0       s-c             c+s
                                  *       1      -s-c            -c+s
                                  *       2      -s+c            -c-s
                                  *       3       s+c             c-s
                                  */
-                switch (n&3) {
+                switch (n & 3) {
                 case 0:
-                        temp =  sin(x)-cos(x);
+                        temp = sin(x) - cos(x);
                         break;
                 case 1:
-                        temp = -sin(x)-cos(x);
+                        temp = -sin(x) - cos(x);
                         break;
                 case 2:
-                        temp = -sin(x)+cos(x);
+                        temp = -sin(x) + cos(x);
                         break;
                 case 3:
-                        temp =  sin(x)+cos(x);
+                        temp = sin(x) + cos(x);
                         break;
                 }
-                b = invsqrtpi*temp/sqrt(x);
+
+                b = invsqrtpi * temp / sqrt(x);
         } else {
                 a = y0(x);
                 b = y1(x);
+
                 /*
                  * fix 1262058 and take care of non-default rounding
                  */
                 for (i = 1; i < n; i++) {
                         temp = b;
-                        b *= (GENERIC) (i + i) / x;
+                        b *= (GENERIC)(i + i) / x;
+
                         if (b <= -DBL_MAX)
                                 break;
+
                         b -= a;
                         a = temp;
                 }
         }
+
         if (sign > 0)
                 return (b);
         else
                 return (-b);
 }