1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __jn = jn 32 #pragma weak __yn = yn 33 34 /* 35 * floating point Bessel's function of the 1st and 2nd kind 36 * of order n: jn(n,x),yn(n,x); 37 * 38 * Special cases: 39 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; 40 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. 41 * Note 2. About jn(n,x), yn(n,x) 42 * For n=0, j0(x) is called, 43 * for n=1, j1(x) is called, 44 * for n<x, forward recursion us used starting 45 * from values of j0(x) and j1(x). 46 * for n>x, a continued fraction approximation to 47 * j(n,x)/j(n-1,x) is evaluated and then backward 48 * recursion is used starting from a supposed value 49 * for j(n,x). The resulting value of j(0,x) is 50 * compared with the actual value to correct the 51 * supposed value of j(n,x). 52 * 53 * yn(n,x) is similar in all respects, except 54 * that forward recursion is used for all 55 * values of n>1. 56 * 57 */ 58 59 #include "libm.h" 60 #include <float.h> /* DBL_MIN */ 61 #include <values.h> /* X_TLOSS */ 62 #include "xpg6.h" /* __xpg6 */ 63 64 #define GENERIC double 65 66 static const GENERIC 67 invsqrtpi = 5.641895835477562869480794515607725858441e-0001, 68 two = 2.0, 69 zero = 0.0, 70 one = 1.0; 71 72 GENERIC 73 jn(int n, GENERIC x) 74 { 75 int i, sgn; 76 GENERIC a, b, temp = 0; 77 GENERIC z, w, ox, on; 78 79 /* 80 * J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) 81 * Thus, J(-n,x) = J(n,-x) 82 */ 83 ox = x; 84 on = (GENERIC)n; 85 86 if (n < 0) { 87 n = -n; 88 x = -x; 89 } 90 91 if (isnan(x)) 92 return (x * x); /* + -> * for Cheetah */ 93 94 if (!((int)_lib_version == libm_ieee || (__xpg6 & 95 _C99SUSv3_math_errexcept) != 0)) { 96 if (fabs(x) > X_TLOSS) 97 return (_SVID_libm_err(on, ox, 38)); 98 } 99 100 if (n == 0) 101 return (j0(x)); 102 103 if (n == 1) 104 return (j1(x)); 105 106 if ((n & 1) == 0) 107 sgn = 0; /* even n */ 108 else 109 sgn = signbit(x); /* old n */ 110 111 x = fabs(x); 112 113 if (x == zero || !finite(x)) { 114 b = zero; 115 } else if ((GENERIC)n <= x) { 116 /* 117 * Safe to use 118 * J(n+1,x)=2n/x *J(n,x)-J(n-1,x) 119 */ 120 if (x > 1.0e91) { 121 /* 122 * x >> n**2 123 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) 124 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) 125 * Let s=sin(x), c=cos(x), 126 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then 127 * 128 * n sin(xn)*sqt2 cos(xn)*sqt2 129 * ---------------------------------- 130 * 0 s-c c+s 131 * 1 -s-c -c+s 132 * 2 -s+c -c-s 133 * 3 s+c c-s 134 */ 135 switch (n & 3) { 136 case 0: 137 temp = cos(x) + sin(x); 138 break; 139 case 1: 140 temp = -cos(x) + sin(x); 141 break; 142 case 2: 143 temp = -cos(x) - sin(x); 144 break; 145 case 3: 146 temp = cos(x) - sin(x); 147 break; 148 } 149 150 b = invsqrtpi * temp / sqrt(x); 151 } else { 152 a = j0(x); 153 b = j1(x); 154 155 for (i = 1; i < n; i++) { 156 temp = b; 157 /* avoid underflow */ 158 b = b * ((GENERIC)(i + i) / x) - a; 159 a = temp; 160 } 161 } 162 } else { 163 if (x < 1e-9) { /* use J(n,x) = 1/n!*(x/2)^n */ 164 b = pow(0.5 * x, (GENERIC)n); 165 166 if (b != zero) { 167 for (a = one, i = 1; i <= n; i++) 168 a *= (GENERIC)i; 169 170 b = b / a; 171 } 172 } else { 173 /* 174 * use backward recurrence 175 * x x^2 x^2 176 * J(n,x)/J(n-1,x) = ---- ------ ------ ..... 177 * 2n - 2(n+1) - 2(n+2) 178 * 179 * 1 1 1 180 * (for large x) = ---- ------ ------ ..... 181 * 2n 2(n+1) 2(n+2) 182 * -- - ------ - ------ - 183 * x x x 184 * 185 * Let w = 2n/x and h = 2/x, then the above quotient 186 * is equal to the continued fraction: 187 * 1 188 * = ----------------------- 189 * 1 190 * w - ----------------- 191 * 1 192 * w+h - --------- 193 * w+2h - ... 194 * 195 * To determine how many terms needed, let 196 * Q(0) = w, Q(1) = w(w+h) - 1, 197 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), 198 * When Q(k) > 1e4 good for single 199 * When Q(k) > 1e9 good for double 200 * When Q(k) > 1e17 good for quaduple 201 */ 202 /* determine k */ 203 GENERIC t, v; 204 double q0, q1, h, tmp; 205 int k, m; 206 207 w = (n + n) / (double)x; 208 h = 2.0 / (double)x; 209 q0 = w; 210 z = w + h; 211 q1 = w * z - 1.0; 212 k = 1; 213 214 while (q1 < 1.0e9) { 215 k += 1; 216 z += h; 217 tmp = z * q1 - q0; 218 q0 = q1; 219 q1 = tmp; 220 } 221 222 m = n + n; 223 224 for (t = zero, i = 2 * (n + k); i >= m; i -= 2) 225 t = one / (i / x - t); 226 227 a = t; 228 b = one; 229 230 /* BEGIN CSTYLED */ 231 /* 232 * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) 233 * hence, if n*(log(2n/x)) > ... 234 * single: 235 * 8.8722839355e+01 236 * double: 237 * 7.09782712893383973096e+02 238 * long double: 239 * 1.1356523406294143949491931077970765006170e+04 240 * then recurrent value may overflow and the result is 241 * likely underflow to zero 242 */ 243 /* END CSTYLED */ 244 tmp = n; 245 v = two / x; 246 tmp = tmp * log(fabs(v * tmp)); 247 248 if (tmp < 7.09782712893383973096e+02) { 249 for (i = n - 1; i > 0; i--) { 250 temp = b; 251 b = ((i + i) / x) * b - a; 252 a = temp; 253 } 254 } else { 255 for (i = n - 1; i > 0; i--) { 256 temp = b; 257 b = ((i + i) / x) * b - a; 258 a = temp; 259 260 if (b > 1e100) { 261 a /= b; 262 t /= b; 263 b = 1.0; 264 } 265 } 266 } 267 268 b = (t * j0(x) / b); 269 } 270 } 271 272 if (sgn != 0) 273 return (-b); 274 else 275 return (b); 276 } 277 278 GENERIC 279 yn(int n, GENERIC x) 280 { 281 int i; 282 int sign; 283 GENERIC a, b, temp = 0, ox, on; 284 285 ox = x; 286 on = (GENERIC)n; 287 288 if (isnan(x)) 289 return (x * x); /* + -> * for Cheetah */ 290 291 if (x <= zero) { 292 if (x == zero) { 293 /* return -one/zero; */ 294 return (_SVID_libm_err((GENERIC)n, x, 12)); 295 } else { 296 /* return zero/zero; */ 297 return (_SVID_libm_err((GENERIC)n, x, 13)); 298 } 299 } 300 301 if (!((int)_lib_version == libm_ieee || (__xpg6 & 302 _C99SUSv3_math_errexcept) != 0)) { 303 if (x > X_TLOSS) 304 return (_SVID_libm_err(on, ox, 39)); 305 } 306 307 sign = 1; 308 309 if (n < 0) { 310 n = -n; 311 312 if ((n & 1) == 1) 313 sign = -1; 314 } 315 316 if (n == 0) 317 return (y0(x)); 318 319 if (n == 1) 320 return (sign * y1(x)); 321 322 if (!finite(x)) 323 return (zero); 324 325 if (x > 1.0e91) { 326 /* 327 * x >> n**2 328 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) 329 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) 330 * Let s = sin(x), c = cos(x), 331 * xn = x-(2n+1)*pi/4, sqt2 = sqrt(2), then 332 * 333 * n sin(xn)*sqt2 cos(xn)*sqt2 334 * ---------------------------------- 335 * 0 s-c c+s 336 * 1 -s-c -c+s 337 * 2 -s+c -c-s 338 * 3 s+c c-s 339 */ 340 switch (n & 3) { 341 case 0: 342 temp = sin(x) - cos(x); 343 break; 344 case 1: 345 temp = -sin(x) - cos(x); 346 break; 347 case 2: 348 temp = -sin(x) + cos(x); 349 break; 350 case 3: 351 temp = sin(x) + cos(x); 352 break; 353 } 354 355 b = invsqrtpi * temp / sqrt(x); 356 } else { 357 a = y0(x); 358 b = y1(x); 359 360 /* 361 * fix 1262058 and take care of non-default rounding 362 */ 363 for (i = 1; i < n; i++) { 364 temp = b; 365 b *= (GENERIC)(i + i) / x; 366 367 if (b <= -DBL_MAX) 368 break; 369 370 b -= a; 371 a = temp; 372 } 373 } 374 375 if (sign > 0) 376 return (b); 377 else 378 return (-b); 379 }