1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __hypot = hypot 32 33 34 /* 35 * Hypot(x, y) 36 * by K.C. Ng for SUN 4.0 libm, updated 3/11/2003. 37 * Method : 38 * A. When rounding is rounded-to-nearest: 39 * If z = x * x + y * y has error less than sqrt(2) / 2 ulp than 40 * sqrt(z) has error less than 1 ulp. 41 * So, compute sqrt(x*x+y*y) with some care as follows: 42 * Assume x > y > 0; 43 * 1. Check whether save and set rounding to round-to-nearest 44 * 2. if x > 2y use 45 * xh*xh+(y*y+((x-xh)*(x+xh))) for x*x+y*y 46 * where xh = x with lower 32 bits cleared; else 47 * 3. if x <= 2y use 48 * x2h*yh+((x-y)*(x-y)+(x2h*(y-yh)+(x2-x2h)*y)) 49 * where x2 = 2*x, x2h = 2x with lower 32 bits cleared, yh = y with 50 * lower 32 bits chopped. 51 * 52 * B. When rounding is not rounded-to-nearest: 53 * The following (magic) formula will yield an error less than 1 ulp. 54 * z = sqrt(x * x + y * y) 55 * hypot(x, y) = x + (y / ((x + z) / y)) 56 * 57 * NOTE: DO NOT remove parenthsis! 58 * 59 * Special cases: 60 * hypot(x, y) is INF if x or y is +INF or -INF; else 61 * hypot(x, y) is NAN if x or y is NAN. 62 * 63 * Accuracy: 64 * hypot(x, y) returns sqrt(x^2+y^2) with error less than 1 ulps 65 * (units in the last place) 66 */ 67 68 #include "libm.h" 69 70 static const double zero = 0.0, 71 onep1u = 1.00000000000000022204e+00, /* 0x3ff00000 1 = 1+2**-52 */ 72 twom53 = 1.11022302462515654042e-16, /* 0x3ca00000 0 = 2**-53 */ 73 twom768 = 6.441148769597133308e-232, /* 2^-768 */ 74 two768 = 1.552518092300708935e+231; /* 2^768 */ 75 76 77 double 78 hypot(double x, double y) 79 { 80 double xh, yh, w, ax, ay; 81 int i, j, nx, ny, ix, iy, iscale = 0; 82 unsigned lx, ly; 83 84 ix = ((int *)&x)[HIWORD] & ~0x80000000; 85 lx = ((int *)&x)[LOWORD]; 86 iy = ((int *)&y)[HIWORD] & ~0x80000000; 87 ly = ((int *)&y)[LOWORD]; 88 89 /* 90 * Force ax = |x| ~>~ ay = |y| 91 */ 92 if (iy > ix) { 93 ax = fabs(y); 94 ay = fabs(x); 95 i = ix; 96 ix = iy; 97 iy = i; 98 i = lx; 99 lx = ly; 100 ly = i; 101 } else { 102 ax = fabs(x); 103 ay = fabs(y); 104 } 105 106 nx = ix >> 20; 107 ny = iy >> 20; 108 j = nx - ny; 109 110 /* 111 * x >= 2^500 (x*x or y*y may overflow) 112 */ 113 if (nx >= 0x5f3) { 114 if (nx == 0x7ff) { /* inf or NaN, signal of sNaN */ 115 if (((ix - 0x7ff00000) | lx) == 0) 116 return (ax == ay ? ay : ax); 117 else if (((iy - 0x7ff00000) | ly) == 0) 118 return (ay == ax ? ax : ay); 119 else 120 return (ax * ay); /* + -> * for Cheetah */ 121 } else if (j > 32) { /* x >> y */ 122 if (j <= 53) 123 ay *= twom53; 124 125 ax += ay; 126 127 if (((int *)&ax)[HIWORD] == 0x7ff00000) 128 ax = _SVID_libm_err(x, y, 4); 129 130 return (ax); 131 } 132 133 ax *= twom768; 134 ay *= twom768; 135 iscale = 2; 136 ix -= 768 << 20; 137 iy -= 768 << 20; 138 } 139 140 /* 141 * y < 2^-450 (x*x or y*y may underflow) 142 */ 143 else if (ny < 0x23d) { 144 if ((ix | lx) == 0) 145 return (ay); 146 147 if ((iy | ly) == 0) 148 return (ax); 149 150 if (j > 53) /* x >> y */ 151 return (ax + ay); 152 153 iscale = 1; 154 ax *= two768; 155 ay *= two768; 156 157 if (nx == 0) { 158 if (ax == zero) /* guard subnormal flush to zero */ 159 return (ax); 160 161 ix = ((int *)&ax)[HIWORD]; 162 } else { 163 ix += 768 << 20; 164 } 165 166 if (ny == 0) { 167 if (ay == zero) /* guard subnormal flush to zero */ 168 return (ax * twom768); 169 170 iy = ((int *)&ay)[HIWORD]; 171 } else { 172 iy += 768 << 20; 173 } 174 175 j = (ix >> 20) - (iy >> 20); 176 177 if (j > 32) { /* x >> y */ 178 if (j <= 53) 179 ay *= twom53; 180 181 return ((ax + ay) * twom768); 182 } 183 } else if (j > 32) { /* x >> y */ 184 if (j <= 53) 185 ay *= twom53; 186 187 return (ax + ay); 188 } 189 190 /* 191 * Medium range ax and ay with max{|ax/ay|,|ay/ax|} bounded by 2^32 192 * First check rounding mode by comparing onep1u*onep1u with onep1u+twom53. 193 * Make sure the computation is done at run-time. 194 */ 195 if (((lx | ly) << 5) == 0) { 196 ay = ay * ay; 197 ax += ay / (ax + sqrt(ax * ax + ay)); 198 } else if (onep1u * onep1u != onep1u + twom53) { 199 /* 200 * round-to-zero, positive, negative mode 201 * magic formula with less than an ulp error 202 */ 203 w = sqrt(ax * ax + ay * ay); 204 ax += ay / ((ax + w) / ay); 205 } else { 206 /* round-to-nearest mode */ 207 w = ax - ay; 208 209 if (w > ay) { 210 ((int *)&xh)[HIWORD] = ix; 211 ((int *)&xh)[LOWORD] = 0; 212 ay = ay * ay + (ax - xh) * (ax + xh); 213 ax = sqrt(xh * xh + ay); 214 } else { 215 ax = ax + ax; 216 ((int *)&xh)[HIWORD] = ix + 0x00100000; 217 ((int *)&xh)[LOWORD] = 0; 218 ((int *)&yh)[HIWORD] = iy; 219 ((int *)&yh)[LOWORD] = 0; 220 ay = w * w + ((ax - xh) * yh + (ay - yh) * ax); 221 ax = sqrt(xh * yh + ay); 222 } 223 } 224 225 if (iscale > 0) { 226 if (iscale == 1) { 227 ax *= twom768; 228 } else { 229 ax *= two768; /* must generate side effect here */ 230 231 if (((int *)&ax)[HIWORD] == 0x7ff00000) 232 ax = _SVID_libm_err(x, y, 4); 233 } 234 } 235 236 return (ax); 237 }