1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __expm1 = expm1 32 33 34 /* 35 * expm1(x) 36 * Returns exp(x)-1, the exponential of x minus 1. 37 * 38 * Method 39 * 1. Arugment reduction: 40 * Given x, find r and integer k such that 41 * 42 * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 43 * 44 * Here a correction term c will be computed to compensate 45 * the error in r when rounded to a floating-point number. 46 * 47 * 2. Approximating expm1(r) by a special rational function on 48 * the interval [0,0.34658]: 49 * Since 50 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... 51 * we define R1(r*r) by 52 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) 53 * That is, 54 * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) 55 * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) 56 * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... 57 * We use a special Reme algorithm on [0,0.347] to generate 58 * a polynomial of degree 5 in r*r to approximate R1. The 59 * maximum error of this polynomial approximation is bounded 60 * by 2**-61. In other words, 61 * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 62 * where Q1 = -1.6666666666666567384E-2, 63 * Q2 = 3.9682539681370365873E-4, 64 * Q3 = -9.9206344733435987357E-6, 65 * Q4 = 2.5051361420808517002E-7, 66 * Q5 = -6.2843505682382617102E-9; 67 * (where z=r*r, and the values of Q1 to Q5 are listed below) 68 * with error bounded by 69 * | 5 | -61 70 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 71 * | | 72 * 73 * expm1(r) = exp(r)-1 is then computed by the following 74 * specific way which minimize the accumulation rounding error: 75 * 2 3 76 * r r [ 3 - (R1 + R1*r/2) ] 77 * expm1(r) = r + --- + --- * [--------------------] 78 * 2 2 [ 6 - r*(3 - R1*r/2) ] 79 * 80 * To compensate the error in the argument reduction, we use 81 * expm1(r+c) = expm1(r) + c + expm1(r)*c 82 * ~ expm1(r) + c + r*c 83 * Thus c+r*c will be added in as the correction terms for 84 * expm1(r+c). Now rearrange the term to avoid optimization 85 * screw up: 86 * ( 2 2 ) 87 * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) 88 * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) 89 * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) 90 * ( ) 91 * 92 * = r - E 93 * 3. Scale back to obtain expm1(x): 94 * From step 1, we have 95 * expm1(x) = either 2^k*[expm1(r)+1] - 1 96 * = or 2^k*[expm1(r) + (1-2^-k)] 97 * 4. Implementation notes: 98 * (A). To save one multiplication, we scale the coefficient Qi 99 * to Qi*2^i, and replace z by (x^2)/2. 100 * (B). To achieve maximum accuracy, we compute expm1(x) by 101 * (i) if x < -56*ln2, return -1.0, (raise inexact if x != inf) 102 * (ii) if k=0, return r-E 103 * (iii) if k=-1, return 0.5*(r-E)-0.5 104 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) 105 * else return 1.0+2.0*(r-E); 106 * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) 107 * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else 108 * (vii) return 2^k(1-((E+2^-k)-r)) 109 * 110 * Special cases: 111 * expm1(INF) is INF, expm1(NaN) is NaN; 112 * expm1(-INF) is -1, and 113 * for finite argument, only expm1(0)=0 is exact. 114 * 115 * Accuracy: 116 * according to an error analysis, the error is always less than 117 * 1 ulp (unit in the last place). 118 * 119 * Misc. info. 120 * For IEEE double 121 * if x > 7.09782712893383973096e+02 then expm1(x) overflow 122 * 123 * Constants: 124 * The hexadecimal values are the intended ones for the following 125 * constants. The decimal values may be used, provided that the 126 * compiler will convert from decimal to binary accurately enough 127 * to produce the hexadecimal values shown. 128 */ 129 130 #include "libm_macros.h" 131 #include <math.h> 132 133 static const double xxx[] = { 134 /* one */ 135 1.0, 136 /* huge */ 1.0e+300, 137 /* tiny */ 1.0e-300, 138 /* o_threshold */ 7.09782712893383973096e+02, /* 40862E42 FEFA39EF */ 139 /* ln2_hi */ 6.93147180369123816490e-01, /* 3FE62E42 FEE00000 */ 140 /* ln2_lo */ 1.90821492927058770002e-10, /* 3DEA39EF 35793C76 */ 141 /* invln2 */ 1.44269504088896338700e+00, /* 3FF71547 652B82FE */ 142 143 /* 144 * scaled coefficients related to expm1 145 * Q1 146 */ 147 -3.33333333333331316428e-02, /* BFA11111 111110F4 */ 148 /* Q2 */ 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ 149 /* Q3 */ -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ 150 /* Q4 */ 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ 151 /* Q5 */ -2.01099218183624371326e-07 /* BE8AFDB7 6E09C32D */ 152 }; 153 154 #define one xxx[0] 155 #define huge xxx[1] 156 #define tiny xxx[2] 157 #define o_threshold xxx[3] 158 #define ln2_hi xxx[4] 159 #define ln2_lo xxx[5] 160 #define invln2 xxx[6] 161 #define Q1 xxx[7] 162 #define Q2 xxx[8] 163 #define Q3 xxx[9] 164 #define Q4 xxx[10] 165 #define Q5 xxx[11] 166 167 double 168 expm1(double x) 169 { 170 double y, hi, lo, c = 0.0L, t, e, hxs, hfx, r1; 171 int k, xsb; 172 unsigned hx; 173 174 hx = ((unsigned *)&x)[HIWORD]; /* high word of x */ 175 xsb = hx & 0x80000000; /* sign bit of x */ 176 177 if (xsb == 0) 178 y = x; 179 else 180 y = -x; /* y = |x| */ 181 182 hx &= 0x7fffffff; /* high word of |x| */ 183 184 /* 185 * filter out huge and non-finite argument 186 * for example exp(38)-1 is approximately 3.1855932e+16 187 */ 188 if (hx >= 0x4043687A) { 189 /* if |x|>=56*ln2 (~38.8162...) */ 190 if (hx >= 0x40862E42) { /* if |x|>=709.78... -> inf */ 191 if (hx >= 0x7ff00000) { 192 if (((hx & 0xfffff) | ((int *)&x)[LOWORD]) != 0) 193 return (x * x); /* + -> * for Cheetah */ 194 else 195 /* exp(+-inf)={inf,-1} */ 196 return (xsb == 0 ? x : -1.0); 197 } 198 199 if (x > o_threshold) 200 return (huge * huge); /* overflow */ 201 } 202 203 if (xsb != 0) { /* x < -56*ln2, return -1.0 w/inexact */ 204 if (x + tiny < 0.0) /* raise inexact */ 205 return (tiny - one); /* return -1 */ 206 } 207 } 208 209 /* argument reduction */ 210 if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ 211 if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ 212 if (xsb == 0) { /* positive number */ 213 hi = x - ln2_hi; 214 lo = ln2_lo; 215 k = 1; 216 } else { 217 /* negative number */ 218 hi = x + ln2_hi; 219 lo = -ln2_lo; 220 k = -1; 221 } 222 } else { 223 /* |x| > 1.5 ln2 */ 224 k = (int)(invln2 * x + (xsb == 0 ? 0.5 : -0.5)); 225 t = k; 226 hi = x - t * ln2_hi; /* t*ln2_hi is exact here */ 227 lo = t * ln2_lo; 228 } 229 230 x = hi - lo; 231 c = (hi - x) - lo; /* still at |x| > 0.5 ln2 */ 232 } else if (hx < 0x3c900000) { 233 /* when |x|<2**-54, return x */ 234 t = huge + x; /* return x w/inexact when x != 0 */ 235 return (x - (t - (huge + x))); 236 } else { 237 /* |x| <= 0.5 ln2 */ 238 k = 0; 239 } 240 241 /* x is now in primary range */ 242 hfx = 0.5 * x; 243 hxs = x * hfx; 244 r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); 245 t = 3.0 - r1 * hfx; 246 e = hxs * ((r1 - t) / (6.0 - x * t)); 247 248 if (k == 0) { /* |x| <= 0.5 ln2 */ 249 return (x - (x * e - hxs)); 250 } else { /* |x| > 0.5 ln2 */ 251 e = (x * (e - c) - c); 252 e -= hxs; 253 254 if (k == -1) 255 return (0.5 * (x - e) - 0.5); 256 257 if (k == 1) { 258 if (x < -0.25) 259 return (-2.0 * (e - (x + 0.5))); 260 else 261 return (one + 2.0 * (x - e)); 262 } 263 264 if (k <= -2 || k > 56) { /* suffice to return exp(x)-1 */ 265 y = one - (e - x); 266 ((int *)&y)[HIWORD] += k << 20; 267 return (y - one); 268 } 269 270 t = one; 271 272 if (k < 20) { 273 ((int *)&t)[HIWORD] = 0x3ff00000 - (0x200000 >> k); 274 /* t = 1 - 2^-k */ 275 y = t - (e - x); 276 ((int *)&y)[HIWORD] += k << 20; 277 } else { 278 ((int *)&t)[HIWORD] = (0x3ff - k) << 20; /* 2^-k */ 279 y = x - (e + t); 280 y += one; 281 ((int *)&y)[HIWORD] += k << 20; 282 } 283 } 284 285 return (y); 286 }