1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __exp2 = exp2 32 33 34 /* 35 * exp2(x) 36 * Code by K.C. Ng for SUN 4.0 libm. 37 * Method : 38 * exp2(x) = 2**x = 2**((x-anint(x))+anint(x)) 39 * = 2**anint(x)*2**(x-anint(x)) 40 * = 2**anint(x)*exp((x-anint(x))*ln2) 41 */ 42 43 #include "libm.h" 44 45 static const double C[] = { 46 0.0, 47 1.0, 48 0.5, 49 6.93147180559945286227e-01, 50 1.0e300, 51 1.0e-300, 52 }; 53 54 #define zero C[0] 55 #define one C[1] 56 #define half C[2] 57 #define ln2 C[3] 58 #define huge C[4] 59 #define tiny C[5] 60 61 double 62 exp2(double x) 63 { 64 int ix, hx, k; 65 double t; 66 67 ix = ((int *)&x)[HIWORD]; 68 hx = ix & ~0x80000000; 69 70 if (hx >= 0x4090e000) { /* |x| >= 1080 or x is nan */ 71 if (hx >= 0x7ff00000) { /* x is inf or nan */ 72 if (ix == 0xfff00000 && ((int *)&x)[LOWORD] == 0) 73 return (zero); 74 75 return (x * x); 76 } 77 78 t = (ix < 0) ? tiny : huge; 79 return (t * t); 80 } 81 82 if (hx < 0x3fe00000) { /* |x| < 0.5 */ 83 if (hx < 0x3c000000) 84 return (one + x); 85 86 return (exp(ln2 * x)); 87 } 88 89 k = (int)x; 90 91 if (x != (double)k) 92 k = (int)((ix < 0) ? x - half : x + half); 93 94 return (scalbn(exp(ln2 * (x - (double)k)), k)); 95 }