1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24  */
  25 /*
  26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27  * Use is subject to license terms.
  28  */
  29 
  30 #pragma weak __erf = erf
  31 #pragma weak __erfc = erfc
  32 
  33 /* INDENT OFF */
  34 /*
  35  * double erf(double x)
  36  * double erfc(double x)
  37  *                           x
  38  *                    2      |\
  39  *     erf(x)  =  ---------  | exp(-t*t)dt
  40  *                 sqrt(pi) \|
  41  *                           0
  42  *
  43  *     erfc(x) =  1-erf(x)
  44  *  Note that
  45  *              erf(-x) = -erf(x)
  46  *              erfc(-x) = 2 - erfc(x)
  47  *
  48  * Method:
  49  *      1. For |x| in [0, 0.84375]
  50  *          erf(x)  = x + x*R(x^2)
  51  *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
  52  *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
  53  *         where R = P/Q where P is an odd poly of degree 8 and
  54  *         Q is an odd poly of degree 10.
  55  *                                               -57.90
  56  *                      | R - (erf(x)-x)/x | <= 2
  57  *
  58  *
  59  *         Remark. The formula is derived by noting
  60  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
  61  *         and that
  62  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
  63  *         is close to one. The interval is chosen because the fix
  64  *         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
  65  *         near 0.6174), and by some experiment, 0.84375 is chosen to
  66  *         guarantee the error is less than one ulp for erf.
  67  *
  68  *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
  69  *         c = 0.84506291151 rounded to single (24 bits)
  70  *              erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
  71  *              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
  72  *                        1+(c+P1(s)/Q1(s))    if x < 0
  73  *              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
  74  *         Remark: here we use the taylor series expansion at x=1.
  75  *              erf(1+s) = erf(1) + s*Poly(s)
  76  *                       = 0.845.. + P1(s)/Q1(s)
  77  *         That is, we use rational approximation to approximate
  78  *                      erf(1+s) - (c = (single)0.84506291151)
  79  *         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
  80  *         where
  81  *              P1(s) = degree 6 poly in s
  82  *              Q1(s) = degree 6 poly in s
  83  *
  84  *      3. For x in [1.25,1/0.35(~2.857143)],
  85  *              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
  86  *              erf(x)  = 1 - erfc(x)
  87  *         where
  88  *              R1(z) = degree 7 poly in z, (z=1/x^2)
  89  *              S1(z) = degree 8 poly in z
  90  *
  91  *      4. For x in [1/0.35,28]
  92  *              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
  93  *                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
  94  *                      = 2.0 - tiny            (if x <= -6)
  95  *              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
  96  *              erf(x)  = sign(x)*(1.0 - tiny)
  97  *         where
  98  *              R2(z) = degree 6 poly in z, (z=1/x^2)
  99  *              S2(z) = degree 7 poly in z
 100  *
 101  *      Note1:
 102  *         To compute exp(-x*x-0.5625+R/S), let s be a single
 103  *         precision number and s := x; then
 104  *              -x*x = -s*s + (s-x)*(s+x)
 105  *              exp(-x*x-0.5626+R/S) =
 106  *                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
 107  *      Note2:
 108  *         Here 4 and 5 make use of the asymptotic series
 109  *                        exp(-x*x)
 110  *              erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
 111  *                        x*sqrt(pi)
 112  *         We use rational approximation to approximate
 113  *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
 114  *         Here is the error bound for R1/S1 and R2/S2
 115  *              |R1/S1 - f(x)|  < 2**(-62.57)
 116  *              |R2/S2 - f(x)|  < 2**(-61.52)
 117  *
 118  *      5. For inf > x >= 28
 119  *              erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
 120  *              erfc(x) = tiny*tiny (raise underflow) if x > 0
 121  *                      = 2 - tiny if x<0
 122  *
 123  *      7. Special case:
 124  *              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
 125  *              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
 126  *      erfc/erf(NaN) is NaN
 127  */
 128 /* INDENT ON */
 129 
 130 #include "libm_macros.h"
 131 #include <math.h>
 132 
 133 static const double xxx[] = {
 134 /* tiny */      1e-300,
 135 /* half */      5.00000000000000000000e-01,     /* 3FE00000, 00000000 */
 136 /* one */       1.00000000000000000000e+00,     /* 3FF00000, 00000000 */
 137 /* two */       2.00000000000000000000e+00,     /* 40000000, 00000000 */
 138 /* erx */       8.45062911510467529297e-01,     /* 3FEB0AC1, 60000000 */
 139 /*
 140  * Coefficients for approximation to  erf on [0,0.84375]
 141  */
 142 /* efx */        1.28379167095512586316e-01,    /* 3FC06EBA, 8214DB69 */
 143 /* efx8 */       1.02703333676410069053e+00,    /* 3FF06EBA, 8214DB69 */
 144 /* pp0 */        1.28379167095512558561e-01,    /* 3FC06EBA, 8214DB68 */
 145 /* pp1 */       -3.25042107247001499370e-01,    /* BFD4CD7D, 691CB913 */
 146 /* pp2 */       -2.84817495755985104766e-02,    /* BF9D2A51, DBD7194F */
 147 /* pp3 */       -5.77027029648944159157e-03,    /* BF77A291, 236668E4 */
 148 /* pp4 */       -2.37630166566501626084e-05,    /* BEF8EAD6, 120016AC */
 149 /* qq1 */        3.97917223959155352819e-01,    /* 3FD97779, CDDADC09 */
 150 /* qq2 */        6.50222499887672944485e-02,    /* 3FB0A54C, 5536CEBA */
 151 /* qq3 */        5.08130628187576562776e-03,    /* 3F74D022, C4D36B0F */
 152 /* qq4 */        1.32494738004321644526e-04,    /* 3F215DC9, 221C1A10 */
 153 /* qq5 */       -3.96022827877536812320e-06,    /* BED09C43, 42A26120 */
 154 /*
 155  * Coefficients for approximation to  erf  in [0.84375,1.25]
 156  */
 157 /* pa0 */       -2.36211856075265944077e-03,    /* BF6359B8, BEF77538 */
 158 /* pa1 */        4.14856118683748331666e-01,    /* 3FDA8D00, AD92B34D */
 159 /* pa2 */       -3.72207876035701323847e-01,    /* BFD7D240, FBB8C3F1 */
 160 /* pa3 */        3.18346619901161753674e-01,    /* 3FD45FCA, 805120E4 */
 161 /* pa4 */       -1.10894694282396677476e-01,    /* BFBC6398, 3D3E28EC */
 162 /* pa5 */        3.54783043256182359371e-02,    /* 3FA22A36, 599795EB */
 163 /* pa6 */       -2.16637559486879084300e-03,    /* BF61BF38, 0A96073F */
 164 /* qa1 */        1.06420880400844228286e-01,    /* 3FBB3E66, 18EEE323 */
 165 /* qa2 */        5.40397917702171048937e-01,    /* 3FE14AF0, 92EB6F33 */
 166 /* qa3 */        7.18286544141962662868e-02,    /* 3FB2635C, D99FE9A7 */
 167 /* qa4 */        1.26171219808761642112e-01,    /* 3FC02660, E763351F */
 168 /* qa5 */        1.36370839120290507362e-02,    /* 3F8BEDC2, 6B51DD1C */
 169 /* qa6 */        1.19844998467991074170e-02,    /* 3F888B54, 5735151D */
 170 /*
 171  * Coefficients for approximation to  erfc in [1.25,1/0.35]
 172  */
 173 /* ra0 */       -9.86494403484714822705e-03,    /* BF843412, 600D6435 */
 174 /* ra1 */       -6.93858572707181764372e-01,    /* BFE63416, E4BA7360 */
 175 /* ra2 */       -1.05586262253232909814e+01,    /* C0251E04, 41B0E726 */
 176 /* ra3 */       -6.23753324503260060396e+01,    /* C04F300A, E4CBA38D */
 177 /* ra4 */       -1.62396669462573470355e+02,    /* C0644CB1, 84282266 */
 178 /* ra5 */       -1.84605092906711035994e+02,    /* C067135C, EBCCABB2 */
 179 /* ra6 */       -8.12874355063065934246e+01,    /* C0545265, 57E4D2F2 */
 180 /* ra7 */       -9.81432934416914548592e+00,    /* C023A0EF, C69AC25C */
 181 /* sa1 */        1.96512716674392571292e+01,    /* 4033A6B9, BD707687 */
 182 /* sa2 */        1.37657754143519042600e+02,    /* 4061350C, 526AE721 */
 183 /* sa3 */        4.34565877475229228821e+02,    /* 407B290D, D58A1A71 */
 184 /* sa4 */        6.45387271733267880336e+02,    /* 40842B19, 21EC2868 */
 185 /* sa5 */        4.29008140027567833386e+02,    /* 407AD021, 57700314 */
 186 /* sa6 */        1.08635005541779435134e+02,    /* 405B28A3, EE48AE2C */
 187 /* sa7 */        6.57024977031928170135e+00,    /* 401A47EF, 8E484A93 */
 188 /* sa8 */       -6.04244152148580987438e-02,    /* BFAEEFF2, EE749A62 */
 189 /*
 190  * Coefficients for approximation to  erfc in [1/.35,28]
 191  */
 192 /* rb0 */       -9.86494292470009928597e-03,    /* BF843412, 39E86F4A */
 193 /* rb1 */       -7.99283237680523006574e-01,    /* BFE993BA, 70C285DE */
 194 /* rb2 */       -1.77579549177547519889e+01,    /* C031C209, 555F995A */
 195 /* rb3 */       -1.60636384855821916062e+02,    /* C064145D, 43C5ED98 */
 196 /* rb4 */       -6.37566443368389627722e+02,    /* C083EC88, 1375F228 */
 197 /* rb5 */       -1.02509513161107724954e+03,    /* C0900461, 6A2E5992 */
 198 /* rb6 */       -4.83519191608651397019e+02,    /* C07E384E, 9BDC383F */
 199 /* sb1 */        3.03380607434824582924e+01,    /* 403E568B, 261D5190 */
 200 /* sb2 */        3.25792512996573918826e+02,    /* 40745CAE, 221B9F0A */
 201 /* sb3 */        1.53672958608443695994e+03,    /* 409802EB, 189D5118 */
 202 /* sb4 */        3.19985821950859553908e+03,    /* 40A8FFB7, 688C246A */
 203 /* sb5 */        2.55305040643316442583e+03,    /* 40A3F219, CEDF3BE6 */
 204 /* sb6 */        4.74528541206955367215e+02,    /* 407DA874, E79FE763 */
 205 /* sb7 */       -2.24409524465858183362e+01     /* C03670E2, 42712D62 */
 206 };
 207 
 208 #define tiny    xxx[0]
 209 #define half    xxx[1]
 210 #define one     xxx[2]
 211 #define two     xxx[3]
 212 #define erx     xxx[4]
 213 /*
 214  * Coefficients for approximation to  erf on [0,0.84375]
 215  */
 216 #define efx     xxx[5]
 217 #define efx8    xxx[6]
 218 #define pp0     xxx[7]
 219 #define pp1     xxx[8]
 220 #define pp2     xxx[9]
 221 #define pp3     xxx[10]
 222 #define pp4     xxx[11]
 223 #define qq1     xxx[12]
 224 #define qq2     xxx[13]
 225 #define qq3     xxx[14]
 226 #define qq4     xxx[15]
 227 #define qq5     xxx[16]
 228 /*
 229  * Coefficients for approximation to  erf  in [0.84375,1.25]
 230  */
 231 #define pa0     xxx[17]
 232 #define pa1     xxx[18]
 233 #define pa2     xxx[19]
 234 #define pa3     xxx[20]
 235 #define pa4     xxx[21]
 236 #define pa5     xxx[22]
 237 #define pa6     xxx[23]
 238 #define qa1     xxx[24]
 239 #define qa2     xxx[25]
 240 #define qa3     xxx[26]
 241 #define qa4     xxx[27]
 242 #define qa5     xxx[28]
 243 #define qa6     xxx[29]
 244 /*
 245  * Coefficients for approximation to  erfc in [1.25,1/0.35]
 246  */
 247 #define ra0     xxx[30]
 248 #define ra1     xxx[31]
 249 #define ra2     xxx[32]
 250 #define ra3     xxx[33]
 251 #define ra4     xxx[34]
 252 #define ra5     xxx[35]
 253 #define ra6     xxx[36]
 254 #define ra7     xxx[37]
 255 #define sa1     xxx[38]
 256 #define sa2     xxx[39]
 257 #define sa3     xxx[40]
 258 #define sa4     xxx[41]
 259 #define sa5     xxx[42]
 260 #define sa6     xxx[43]
 261 #define sa7     xxx[44]
 262 #define sa8     xxx[45]
 263 /*
 264  * Coefficients for approximation to  erfc in [1/.35,28]
 265  */
 266 #define rb0     xxx[46]
 267 #define rb1     xxx[47]
 268 #define rb2     xxx[48]
 269 #define rb3     xxx[49]
 270 #define rb4     xxx[50]
 271 #define rb5     xxx[51]
 272 #define rb6     xxx[52]
 273 #define sb1     xxx[53]
 274 #define sb2     xxx[54]
 275 #define sb3     xxx[55]
 276 #define sb4     xxx[56]
 277 #define sb5     xxx[57]
 278 #define sb6     xxx[58]
 279 #define sb7     xxx[59]
 280 
 281 double
 282 erf(double x) {
 283         int hx, ix, i;
 284         double R, S, P, Q, s, y, z, r;
 285 
 286         hx = ((int *) &x)[HIWORD];
 287         ix = hx & 0x7fffffff;
 288         if (ix >= 0x7ff00000) {      /* erf(nan)=nan */
 289 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
 290                 if (ix >= 0x7ff80000)                /* assumes sparc-like QNaN */
 291                         return (x);
 292 #endif
 293                 i = ((unsigned) hx >> 31) << 1;
 294                 return ((double) (1 - i) + one / x);    /* erf(+-inf)=+-1 */
 295         }
 296 
 297         if (ix < 0x3feb0000) {       /* |x|<0.84375 */
 298                 if (ix < 0x3e300000) {       /* |x|<2**-28 */
 299                         if (ix < 0x00800000) /* avoid underflow */
 300                                 return (0.125 * (8.0 * x + efx8 * x));
 301                         return (x + efx * x);
 302                 }
 303                 z = x * x;
 304                 r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
 305                 s = one +
 306                         z *(qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
 307                 y = r / s;
 308                 return (x + x * y);
 309         }
 310         if (ix < 0x3ff40000) {       /* 0.84375 <= |x| < 1.25 */
 311                 s = fabs(x) - one;
 312                 P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 +
 313                         s * (pa5 + s * pa6)))));
 314                 Q = one + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 +
 315                         s * (qa5 + s * qa6)))));
 316                 if (hx >= 0)
 317                         return (erx + P / Q);
 318                 else
 319                         return (-erx - P / Q);
 320         }
 321         if (ix >= 0x40180000) {      /* inf > |x| >= 6 */
 322                 if (hx >= 0)
 323                         return (one - tiny);
 324                 else
 325                         return (tiny - one);
 326         }
 327         x = fabs(x);
 328         s = one / (x * x);
 329         if (ix < 0x4006DB6E) {       /* |x| < 1/0.35 */
 330                 R = ra0 + s * (ra1 + s * (ra2 + s * (ra3 + s * (ra4 +
 331                         s * (ra5 + s * (ra6 + s * ra7))))));
 332                 S = one + s * (sa1 + s * (sa2 + s * (sa3 + s * (sa4 +
 333                         s * (sa5 + s * (sa6 + s * (sa7 + s * sa8)))))));
 334         } else {                        /* |x| >= 1/0.35 */
 335                 R = rb0 + s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 +
 336                         s * (rb5 + s * rb6)))));
 337                 S = one + s * (sb1 + s * (sb2 + s * (sb3 + s * (sb4 +
 338                         s * (sb5 + s * (sb6 + s * sb7))))));
 339         }
 340         z = x;
 341         ((int *) &z)[LOWORD] = 0;
 342         r = exp(-z * z - 0.5625) * exp((z - x) * (z + x) + R / S);
 343         if (hx >= 0)
 344                 return (one - r / x);
 345         else
 346                 return (r / x - one);
 347 }
 348 
 349 double
 350 erfc(double x) {
 351         int hx, ix;
 352         double R, S, P, Q, s, y, z, r;
 353 
 354         hx = ((int *) &x)[HIWORD];
 355         ix = hx & 0x7fffffff;
 356         if (ix >= 0x7ff00000) {      /* erfc(nan)=nan */
 357 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
 358                 if (ix >= 0x7ff80000)                /* assumes sparc-like QNaN */
 359                         return (x);
 360 #endif
 361                 /* erfc(+-inf)=0,2 */
 362                 return ((double) (((unsigned) hx >> 31) << 1) + one / x);
 363         }
 364 
 365         if (ix < 0x3feb0000) {       /* |x| < 0.84375 */
 366                 if (ix < 0x3c700000) /* |x| < 2**-56 */
 367                         return (one - x);
 368                 z = x * x;
 369                 r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
 370                 s = one +
 371                         z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
 372                 y = r / s;
 373                 if (hx < 0x3fd00000) {       /* x < 1/4 */
 374                         return (one - (x + x * y));
 375                 } else {
 376                         r = x * y;
 377                         r += (x - half);
 378                         return (half - r);
 379                 }
 380         }
 381         if (ix < 0x3ff40000) {       /* 0.84375 <= |x| < 1.25 */
 382                 s = fabs(x) - one;
 383                 P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 +
 384                         s * (pa5 + s * pa6)))));
 385                 Q = one + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 +
 386                         s * (qa5 + s * qa6)))));
 387                 if (hx >= 0) {
 388                         z = one - erx;
 389                         return (z - P / Q);
 390                 } else {
 391                         z = erx + P / Q;
 392                         return (one + z);
 393                 }
 394         }
 395         if (ix < 0x403c0000) {       /* |x|<28 */
 396                 x = fabs(x);
 397                 s = one / (x * x);
 398                 if (ix < 0x4006DB6D) {       /* |x| < 1/.35 ~ 2.857143 */
 399                         R = ra0 + s * (ra1 + s * (ra2 + s * (ra3 + s * (ra4 +
 400                                 s * (ra5 + s * (ra6 + s * ra7))))));
 401                         S = one + s * (sa1 + s * (sa2 + s * (sa3 + s * (sa4 +
 402                                 s * (sa5 + s * (sa6 + s * (sa7 + s * sa8)))))));
 403                 } else {
 404                         /* |x| >= 1/.35 ~ 2.857143 */
 405                         if (hx < 0 && ix >= 0x40180000)
 406                                 return (two - tiny);    /* x < -6 */
 407 
 408                         R = rb0 + s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 +
 409                                 s * (rb5 + s * rb6)))));
 410                         S = one + s * (sb1 + s * (sb2 + s * (sb3 + s * (sb4 +
 411                                 s * (sb5 + s * (sb6 + s * sb7))))));
 412                 }
 413                 z = x;
 414                 ((int *) &z)[LOWORD] = 0;
 415                 r = exp(-z * z - 0.5625) * exp((z - x) * (z + x) + R / S);
 416                 if (hx > 0)
 417                         return (r / x);
 418                 else
 419                         return (two - r / x);
 420         } else {
 421                 if (hx > 0)
 422                         return (tiny * tiny);
 423                 else
 424                         return (two - tiny);
 425         }
 426 }