1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __cos = cos 32 33 34 /* 35 * cos(x) 36 * Accurate Table look-up algorithm by K.C. Ng, May, 1995. 37 * 38 * Algorithm: see sincos.c 39 */ 40 41 #include "libm.h" 42 43 static const double sc[] = { 44 /* ONE = */ 45 1.0, 46 /* NONE = */ -1.0, 47 48 /* 49 * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008 50 */ 51 /* PP1 = */-0.166666666666316558867252052378889521480627858683055567, 52 /* PP2 = */.008333315652997472323564894248466758248475374977974017927, 53 54 /* 55 * |(sin(x) - (x+p1*x^3+...+p4*x^9)| 56 * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125 57 * | x | 58 */ 59 /* P1 = */ -1.666666666666629669805215138920301589656e-0001, 60 /* P2 = */ 8.333333332390951295683993455280336376663e-0003, 61 /* P3 = */ -1.984126237997976692791551778230098403960e-0004, 62 /* P4 = */ 2.753403624854277237649987622848330351110e-0006, 63 64 /* 65 * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d) 66 */ 67 /* QQ1 = */-0.4999999999975492381842911981948418542742729, 68 /* QQ2 = */0.041666542904352059294545209158357640398771740, 69 /* Q1 = */ -0.5, 70 /* Q2 = */ 4.166666666500350703680945520860748617445e-0002, 71 /* Q3 = */ -1.388888596436972210694266290577848696006e-0003, 72 /* Q4 = */ 2.478563078858589473679519517892953492192e-0005, 73 /* PIO2_H = */ 1.570796326794896557999, 74 /* PIO2_L = */ 6.123233995736765886130e-17, 75 /* PIO2_L0 = */ 6.123233995727922165564e-17, 76 /* PIO2_L1 = */ 8.843720566135701120255e-29, 77 /* PI3O2_H = */ 4.712388980384689673997, 78 /* PI3O2_L = */ 1.836970198721029765839e-16, 79 /* PI3O2_L0 = */ 1.836970198720396133587e-16, 80 /* PI3O2_L1 = */ 6.336322524749201142226e-29, 81 /* PI5O2_H = */ 7.853981633974482789995, 82 /* PI5O2_L = */ 3.061616997868382943065e-16, 83 /* PI5O2_L0 = */ 3.061616997861941598865e-16, 84 /* PI5O2_L1 = */ 6.441344200433640781982e-28, 85 }; 86 87 88 #define ONE sc[0] 89 #define PP1 sc[2] 90 #define PP2 sc[3] 91 #define P1 sc[4] 92 #define P2 sc[5] 93 #define P3 sc[6] 94 #define P4 sc[7] 95 #define QQ1 sc[8] 96 #define QQ2 sc[9] 97 #define Q1 sc[10] 98 #define Q2 sc[11] 99 #define Q3 sc[12] 100 #define Q4 sc[13] 101 #define PIO2_H sc[14] 102 #define PIO2_L sc[15] 103 #define PIO2_L0 sc[16] 104 #define PIO2_L1 sc[17] 105 #define PI3O2_H sc[18] 106 #define PI3O2_L sc[19] 107 #define PI3O2_L0 sc[20] 108 #define PI3O2_L1 sc[21] 109 #define PI5O2_H sc[22] 110 #define PI5O2_L sc[23] 111 #define PI5O2_L0 sc[24] 112 #define PI5O2_L1 sc[25] 113 114 extern const double _TBL_sincos[], _TBL_sincosx[]; 115 116 double 117 cos(double x) 118 { 119 double z, y[2], w, s, v, p, q; 120 int i, j, n, hx, ix, lx; 121 122 hx = ((int *)&x)[HIWORD]; 123 lx = ((int *)&x)[LOWORD]; 124 ix = hx & ~0x80000000; 125 126 if (ix <= 0x3fc50000) { /* |x| < 10.5/64 = 0.164062500 */ 127 if (ix < 0x3e400000) { /* |x| < 2**-27 */ 128 if ((int)x == 0) 129 return (ONE); 130 } 131 132 z = x * x; 133 134 if (ix < 0x3f800000) /* |x| < 0.008 */ 135 w = z * (QQ1 + z * QQ2); 136 else 137 w = z * ((Q1 + z * Q2) + (z * z) * (Q3 + z * Q4)); 138 139 return (ONE + w); 140 } 141 142 /* for 0.164062500 < x < M, */ 143 n = ix >> 20; 144 145 if (n < 0x402) { /* x < 8 */ 146 i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n); 147 j = i - 10; 148 x = fabs(x); 149 v = x - _TBL_sincosx[j]; 150 151 if (((j - 81) ^ (j - 101)) < 0) { 152 /* near pi/2, cos(pi/2-x)=sin(x) */ 153 p = PIO2_H - x; 154 i = ix - 0x3ff921fb; 155 x = p + PIO2_L; 156 157 if ((i | ((lx - 0x54442D00) & 0xffffff00)) == 0) { 158 /* very close to pi/2 */ 159 x = p + PIO2_L0; 160 return (x + PIO2_L1); 161 } 162 163 z = x * x; 164 165 if (((ix - 0x3ff92000) >> 12) == 0) { 166 /* |pi/2-x|<2**-8 */ 167 w = PIO2_L + (z * x) * (PP1 + z * PP2); 168 } else { 169 w = PIO2_L + (z * x) * ((P1 + z * P2) + (z * 170 z) * (P3 + z * P4)); 171 } 172 173 return (p + w); 174 } 175 176 s = v * v; 177 178 if (((j - 282) ^ (j - 302)) < 0) { 179 /* near 3/2pi, cos(x-3/2pi)=sin(x) */ 180 p = x - PI3O2_H; 181 i = ix - 0x4012D97C; 182 x = p - PI3O2_L; 183 184 if ((i | ((lx - 0x7f332100) & 0xffffff00)) == 0) { 185 /* very close to 3/2pi */ 186 x = p - PI3O2_L0; 187 return (x - PI3O2_L1); 188 } 189 190 z = x * x; 191 192 if (((ix - 0x4012D800) >> 9) == 0) { 193 /* |x-3/2pi|<2**-8 */ 194 w = (z * x) * (PP1 + z * PP2) - PI3O2_L; 195 } else { 196 w = (z * x) * ((P1 + z * P2) + (z * z) * (P3 + 197 z * P4)) - PI3O2_L; 198 } 199 200 return (p + w); 201 } 202 203 if (((j - 483) ^ (j - 503)) < 0) { 204 /* near 5pi/2, cos(5pi/2-x)=sin(x) */ 205 p = PI5O2_H - x; 206 i = ix - 0x401F6A7A; 207 x = p + PI5O2_L; 208 209 if ((i | ((lx - 0x29553800) & 0xffffff00)) == 0) { 210 /* very close to pi/2 */ 211 x = p + PI5O2_L0; 212 return (x + PI5O2_L1); 213 } 214 215 z = x * x; 216 217 if (((ix - 0x401F6A7A) >> 7) == 0) { 218 /* |pi/2-x|<2**-8 */ 219 w = PI5O2_L + (z * x) * (PP1 + z * PP2); 220 } else { 221 w = PI5O2_L + (z * x) * ((P1 + z * P2) + (z * 222 z) * (P3 + z * P4)); 223 } 224 225 return (p + w); 226 } 227 228 j <<= 1; 229 w = _TBL_sincos[j]; 230 z = _TBL_sincos[j + 1]; 231 p = v + (v * s) * (PP1 + s * PP2); 232 q = s * (QQ1 + s * QQ2); 233 return (z - (w * p - z * q)); 234 } 235 236 if (ix >= 0x7ff00000) /* cos(Inf or NaN) is NaN */ 237 return (x / x); 238 239 /* argument reduction needed */ 240 n = __rem_pio2(x, y); 241 242 switch (n & 3) { 243 case 0: 244 return (__k_cos(y[0], y[1])); 245 case 1: 246 return (-__k_sin(y[0], y[1])); 247 case 2: 248 return (-__k_cos(y[0], y[1])); 249 default: 250 return (__k_sin(y[0], y[1])); 251 } 252 }