Print this page
    
11210 libm should be cstyle(1ONBLD) clean
    
      
        | Split | Close | 
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/lib/libm/common/C/atan2.c
          +++ new/usr/src/lib/libm/common/C/atan2.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  
    | ↓ open down ↓ | 10 lines elided | ↑ open up ↑ | 
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
       21 +
  21   22  /*
  22   23   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  23   24   */
       25 +
  24   26  /*
  25   27   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  26   28   * Use is subject to license terms.
  27   29   */
  28   30  
  29   31  #pragma weak __atan2 = atan2
  30   32  
  31   33  #include "libm.h"
  32   34  
  33   35  /*
  34   36   * Let t(0) = 1 and for i = 1, ..., 160, let t(i) be the slope of
  35   37   * the line bisecting the conical hull of the set of points (x,y)
  36   38   * where x and y are positive normal floating point numbers and
  37   39   * the high order words hx and hy of their binary representations
  38   40   * satisfy |hx - hy - i * 0x8000| <= 0x4000.  Then:
  39   41   *
  40   42   * TBL[4*i+2] is t(i) rounded to 21 significant bits (i.e., the
  41   43   *   low order word is zero), and
  42   44   *
  43   45   * TBL[4*i] + TBL[4*i+1] form a doubled-double approximation to
  44   46   *   atan(TBL[4*i+2]).
  45   47   *
  46   48   * Finally, TBL[4*161] = TBL[4*161+1] = TBL[4*161+2] = 0.
  47   49   *
  48   50   * Now for any (x,y) with 0 < y <= x and any 0 < t <= 1,  we have
  49   51   * atan(y/x) = atan(t) + atan((y-t*x)/(x+t*y)).  By choosing t =
  50   52   * TBL[4*i+2], where i is the multiple of 0x8000 nearest hx - hy,
  51   53   * if this multiple is less than 161, and i = 161 otherwise, we
  52   54   * find that |(y-t*x)/(x+t*y)| <~ 2^-5.
  53   55   */
  54   56  static const double TBL[] = {
  55   57          7.8539816339744827900e-01, +3.0616169978683830179e-17,
  56   58          1.0000000000000000000e+00, +0,
  57   59          7.7198905126506112140e-01, +2.6989956960083153652e-16,
  58   60          9.7353506088256835938e-01, +0,
  59   61          7.6068143954461309164e-01, -3.5178810518941914972e-16,
  60   62          9.5174932479858398438e-01, +0,
  61   63          7.4953661876353638860e-01, -3.2548100004524337476e-16,
  62   64          9.3073129653930664062e-01, +0,
  63   65          7.3854614984728339522e-01, -2.0775571023910406668e-16,
  64   66          9.1042709350585937500e-01, +0,
  65   67          7.2770146962041337702e-01, +3.8883249403168348802e-16,
  66   68          8.9078664779663085938e-01, +0,
  67   69          7.1699492488093774512e-01, -4.0468841511547224071e-16,
  68   70          8.7176513671875000000e-01, +0,
  69   71          7.0641813488653149022e-01, +5.6902424353981484031e-17,
  70   72          8.5331964492797851562e-01, +0,
  71   73          6.9596351101035658360e-01, +2.8245513321075021303e-16,
  72   74          8.3541154861450195312e-01, +0,
  73   75          6.8562363680534943455e-01, -4.2316970721658854064e-16,
  74   76          8.1800508499145507812e-01, +0,
  75   77          6.7539055666438230219e-01, +4.3535917281300047233e-16,
  76   78          8.0106592178344726562e-01, +0,
  77   79          6.6525763346931832132e-01, +1.1830431602404727977e-17,
  78   80          7.8456401824951171875e-01, +0,
  79   81          6.5521767574310185722e-01, -1.7435923100651044208e-16,
  80   82          7.6847028732299804688e-01, +0,
  81   83          6.4526390999481897381e-01, -1.4741927403093983947e-16,
  82   84          7.5275802612304687500e-01, +0,
  83   85          6.3538979894204850041e-01, +1.5734535069995660853e-16,
  84   86          7.3740243911743164062e-01, +0,
  85   87          6.2558914346942717799e-01, -2.8175588856316910960e-16,
  86   88          7.2238063812255859375e-01, +0,
  87   89          6.1585586476157949676e-01, -4.3056167357725226449e-16,
  88   90          7.0767116546630859375e-01, +0,
  89   91          6.0618408027576098362e-01, +1.5018013918429320289e-16,
  90   92          6.9325399398803710938e-01, +0,
  91   93          5.9656817827486730010e-01, +5.5271942033557644157e-17,
  92   94          6.7911052703857421875e-01, +0,
  93   95          5.8700289083426504533e-01, -8.2411369282676383293e-17,
  94   96          6.6522359848022460938e-01, +0,
  95   97          5.7748303053627658699e-01, +4.9400383775709159558e-17,
  96   98          6.5157699584960937500e-01, +0,
  97   99          5.6800353968303252117e-01, +2.9924431103311109543e-16,
  98  100          6.3815546035766601562e-01, +0,
  99  101          5.5855953863493823519e-01, -2.0306003403868777403e-16,
 100  102          6.2494468688964843750e-01, +0,
 101  103          5.4914706708329674711e-01, +2.8255378613779667461e-17,
 102  104          6.1193227767944335938e-01, +0,
 103  105          5.3976176660618069292e-01, +1.6370248781078747995e-16,
 104  106          5.9910583496093750000e-01, +0,
 105  107          5.3039888601412332747e-01, -7.6196097360093680134e-17,
 106  108          5.8645296096801757812e-01, +0,
 107  109          5.2105543924318808990e-01, -2.2400815668154739561e-16,
 108  110          5.7396411895751953125e-01, +0,
 109  111          5.1172778873967050828e-01, -3.6888136019899681185e-16,
 110  112          5.6162929534912109375e-01, +0,
 111  113          5.0241199666452196482e-01, -2.5412891474397011281e-16,
 112  114          5.4943847656250000000e-01, +0,
 113  115          4.9310493954293743712e-01, +4.4132186128251152229e-16,
 114  116          5.3738307952880859375e-01, +0,
 115  117          4.8380436844750995817e-01, -2.7844387907776656488e-16,
 116  118          5.2545595169067382812e-01, +0,
 117  119          4.7450670361463753721e-01, -2.0494355197368286028e-16,
 118  120          5.1364850997924804688e-01, +0,
 119  121          4.6367660027976320691e-01, +3.1709878607954760668e-16,
 120  122          5.0003623962402343750e-01, +0,
 121  123          4.5304753104003925301e-01, +3.3593436122420574865e-16,
 122  124          4.8681926727294921875e-01, +0,
 123  125          4.4423658037407065535e-01, +2.1987183192008082015e-17,
 124  126          4.7596645355224609375e-01, +0,
 125  127          4.3567016972500294258e-01, +3.0118422805369552650e-16,
 126  128          4.6550178527832031250e-01, +0,
 127  129          4.2733152672544871820e-01, -3.2667693224866479909e-16,
 128  130          4.5539522171020507812e-01, +0,
 129  131          4.1920540176693954493e-01, -2.2454273841113897647e-16,
 130  132          4.4561982154846191406e-01, +0,
 131  133          4.1127722812701872357e-01, -3.1620568973494653391e-16,
 132  134          4.3615055084228515625e-01, +0,
 133  135          4.0353384063084263289e-01, -3.5932009901481421723e-16,
 134  136          4.2696499824523925781e-01, +0,
 135  137          3.9596319345246833166e-01, -4.0281533417458698585e-16,
 136  138          4.1804289817810058594e-01, +0,
 137  139          3.8855405220339722661e-01, +1.6132231486045176674e-16,
 138  140          4.0936565399169921875e-01, +0,
 139  141          3.8129566313738116889e-01, +1.7684657060650804570e-16,
 140  142          4.0091586112976074219e-01, +0,
 141  143          3.7417884791401867517e-01, +2.6897604227426977619e-16,
 142  144          3.9267849922180175781e-01, +0,
 143  145          3.6719421967585041955e-01, -4.5886151448673745001e-17,
 144  146          3.8463878631591796875e-01, +0,
 145  147          3.6033388248727771241e-01, +1.5804115573136074946e-16,
 146  148          3.7678408622741699219e-01, +0,
 147  149          3.5358982224579182940e-01, +1.2624619863035782939e-16,
 148  150          3.6910200119018554688e-01, +0,
 149  151          3.4695498404186952968e-01, +9.3221684607372865177e-17,
 150  152          3.6158156394958496094e-01, +0,
 151  153          3.4042268308109679964e-01, +2.7697913559445449137e-16,
 152  154          3.5421252250671386719e-01, +0,
 153  155          3.3398684598563566084e-01, +3.6085337449716011085e-16,
 154  156          3.4698557853698730469e-01, +0,
 155  157          3.2764182824591436827e-01, +2.0581506352606456186e-16,
 156  158          3.3989214897155761719e-01, +0,
 157  159          3.2138200938788497041e-01, -1.9015787485430693661e-16,
 158  160          3.3292388916015625000e-01, +0,
 159  161          3.1520245348069497737e-01, +2.6961839659264087022e-16,
 160  162          3.2607340812683105469e-01, +0,
 161  163          3.0909871873117023000e-01, -1.5641891686756272625e-16,
 162  164          3.1933403015136718750e-01, +0,
 163  165          3.0306644308947827682e-01, +2.8801634211591956223e-16,
 164  166          3.1269931793212890625e-01, +0,
 165  167          2.9710135482774191473e-01, -4.3148994478973365819e-16,
 166  168          3.0616307258605957031e-01, +0,
 167  169          2.9120015759141004708e-01, -6.8539854790808585159e-17,
 168  170          2.9972028732299804688e-01, +0,
 169  171          2.8535879880370362827e-01, -1.2231638445300492682e-16,
 170  172          2.9336524009704589844e-01, +0,
 171  173          2.7957422506893880865e-01, -4.6707752931043135528e-17,
 172  174          2.8709340095520019531e-01, +0,
 173  175          2.7384352102802367313e-01, -4.1215636366229625876e-16,
 174  176          2.8090047836303710938e-01, +0,
 175  177          2.6816369484161040049e-01, -2.3700583122400495333e-16,
 176  178          2.7478218078613281250e-01, +0,
 177  179          2.6253212627627764419e-01, +2.3123213692190889610e-16,
 178  180          2.6873469352722167969e-01, +0,
 179  181          2.5694635355759309903e-01, -4.0638513814701264145e-16,
 180  182          2.6275444030761718750e-01, +0,
 181  183          2.5140385572454615470e-01, -3.4795333793554943723e-16,
 182  184          2.5683784484863281250e-01, +0,
 183  185          2.4500357070096612233e-01, +6.6542334848010259289e-17,
 184  186          2.5002646446228027344e-01, +0,
 185  187          2.3877766609573036760e-01, -2.7756633678549343650e-16,
 186  188          2.4342155456542968750e-01, +0,
 187  189          2.3365669377188336142e-01, +3.2700803838522067998e-16,
 188  190          2.3800384998321533203e-01, +0,
 189  191          2.2870810463931334766e-01, -4.4279127662219799521e-16,
 190  192          2.3278105258941650391e-01, +0,
 191  193          2.2391820542294382790e-01, +3.7558889374284208052e-16,
 192  194          2.2773718833923339844e-01, +0,
 193  195          2.1927501815429550902e-01, -1.4829838176513811186e-16,
 194  196          2.2285830974578857422e-01, +0,
 195  197          2.1476740847367459253e-01, -2.0535381496063397578e-17,
 196  198          2.1813154220581054688e-01, +0,
 197  199          2.1038568111737454558e-01, -4.2826767738736168650e-16,
 198  200          2.1354568004608154297e-01, +0,
 199  201          2.0612057974373865221e-01, +4.2108051749502232359e-16,
 200  202          2.0909011363983154297e-01, +0,
 201  203          2.0196410359405447821e-01, +3.5157118083511092869e-16,
 202  204          2.0475566387176513672e-01, +0,
 203  205          1.9790861144712756925e-01, +3.7894950972257700994e-16,
 204  206          2.0053362846374511719e-01, +0,
 205  207          1.9394752160084305359e-01, +2.8270367403478935534e-16,
 206  208          1.9641649723052978516e-01, +0,
 207  209          1.9007440763641536563e-01, -2.0842758095683676397e-16,
 208  210          1.9239699840545654297e-01, +0,
 209  211          1.8628369629742813629e-01, +3.4710917040399448932e-16,
 210  212          1.8846881389617919922e-01, +0,
 211  213          1.8256998712939509488e-01, +1.1053834120570125251e-16,
 212  214          1.8462586402893066406e-01, +0,
 213  215          1.7892875067284830237e-01, +3.0486232913366680305e-16,
 214  216          1.8086302280426025391e-01, +0,
 215  217          1.7535529778449010507e-01, -2.3810135019970148624e-16,
 216  218          1.7717504501342773438e-01, +0,
 217  219          1.7184559192514736736e-01, +5.1432582846210893916e-17,
 218  220          1.7355740070343017578e-01, +0,
 219  221          1.6839590847744290159e-01, +3.1605623296041433586e-18,
 220  222          1.7000591754913330078e-01, +0,
 221  223          1.6500283902547518977e-01, +1.5405422268770998251e-16,
 222  224          1.6651678085327148438e-01, +0,
 223  225          1.6166306303174859949e-01, +4.0042241517254928672e-16,
 224  226          1.6308629512786865234e-01, +0,
 225  227          1.5837358268281231943e-01, -2.2786616251622967291e-16,
 226  228          1.5971112251281738281e-01, +0,
 227  229          1.5513160990288810126e-01, -3.7547723514797166336e-16,
 228  230          1.5638816356658935547e-01, +0,
 229  231          1.5193468535499299321e-01, +4.3497510505554267446e-16,
 230  232          1.5311467647552490234e-01, +0,
 231  233          1.4878033155427861089e-01, -2.3102860235324261895e-16,
 232  234          1.4988791942596435547e-01, +0,
 233  235          1.4566628729590647140e-01, +9.9227592950040279415e-17,
 234  236          1.4670538902282714844e-01, +0,
 235  237          1.4259050967286590605e-01, -3.3869909683813096906e-18,
 236  238          1.4356482028961181641e-01, +0,
 237  239          1.3955105903633846509e-01, +1.5500435650773331566e-17,
 238  240          1.4046406745910644531e-01, +0,
 239  241          1.3654610022831903393e-01, +3.3965918616682805753e-16,
 240  242          1.3740110397338867188e-01, +0,
 241  243          1.3357402082462854764e-01, +2.7572431581527535421e-16,
 242  244          1.3437414169311523438e-01, +0,
 243  245          1.3063319828908959153e-01, -3.4667213797076707331e-16,
 244  246          1.3138139247894287109e-01, +0,
 245  247          1.2772200049776749609e-01, +3.1089261947725651968e-16,
 246  248          1.2842106819152832031e-01, +0,
 247  249          1.2436931430778752627e-01, -4.0654251891464630059e-16,
 248  250          1.2501454353332519531e-01, +0,
 249  251          1.2111683701666819957e-01, -3.9381654342464836012e-16,
 250  252          1.2171256542205810547e-01, +0,
 251  253          1.1844801833536511282e-01, -3.6673155595150283444e-16,
 252  254          1.1900508403778076172e-01, +0,
 253  255          1.1587365536613614125e-01, -1.5026628801318421951e-16,
 254  256          1.1639505624771118164e-01, +0,
 255  257          1.1338607085741525538e-01, +1.2886806274050538880e-16,
 256  258          1.1387449502944946289e-01, +0,
 257  259          1.1097844020819369604e-01, +2.3848343623577768044e-16,
 258  260          1.1143630743026733398e-01, +0,
 259  261          1.0864456107308662069e-01, +4.2065430313285469408e-16,
 260  262          1.0907405614852905273e-01, +0,
 261  263          1.0637891628473727934e-01, -4.6883543790348472687e-18,
 262  264          1.0678201913833618164e-01, +0,
 263  265          1.0417650062205296990e-01, +1.4774925414624453292e-16,
 264  266          1.0455501079559326172e-01, +0,
 265  267          1.0203276464730581807e-01, -1.5677032794816452332e-16,
 266  268          1.0238832235336303711e-01, +0,
 267  269          9.9943617083734892503e-02, +3.4511310907979792828e-16,
 268  270          1.0027772188186645508e-01, +0,
 269  271          9.7905249824711049200e-02, +3.4489485563461708496e-16,
 270  272          9.8219275474548339844e-02, +0,
 271  273          9.5914316649349906641e-02, -1.3214510886789011569e-17,
 272  274          9.6209526062011718750e-02, +0,
 273  275          9.3967698614664918466e-02, +1.1048427091217964090e-16,
 274  276          9.4245254993438720703e-02, +0,
 275  277          9.2062564267554769515e-02, -3.7297463814697759309e-16,
 276  278          9.2323541641235351562e-02, +0,
 277  279          9.0196252506350660383e-02, -3.5280143043576718079e-16,
 278  280          9.0441644191741943359e-02, +0,
 279  281          8.8366391663268650802e-02, -6.1140673227541621183e-17,
 280  282          8.8597118854522705078e-02, +0,
 281  283          8.6570782100201526532e-02, -2.0998844594957629702e-16,
 282  284          8.6787700653076171875e-02, +0,
 283  285          8.4807337678923566671e-02, +3.9530981588194673068e-16,
 284  286          8.5011243820190429688e-02, +0,
 285  287          8.3074323040850828193e-02, -4.3022503210464894539e-17,
 286  288          8.3265960216522216797e-02, +0,
 287  289          8.1369880712663267275e-02, -6.3063867569127169744e-18,
 288  290          8.1549942493438720703e-02, +0,
 289  291          7.9692445771216036121e-02, -5.0787623072962671502e-17,
 290  292          7.9861581325531005859e-02, +0,
 291  293          7.8040568735575632786e-02, -3.8810063021216721741e-16,
 292  294          7.8199386596679687500e-02, +0,
 293  295          7.6412797391314235540e-02, +4.1246529500495762995e-16,
 294  296          7.6561868190765380859e-02, +0,
 295  297          7.4807854772808823896e-02, -3.7025599052186724156e-16,
 296  298          7.4947714805603027344e-02, +0,
 297  299          7.3224639528778112663e-02, +4.2209138483206712401e-17,
 298  300          7.3355793952941894531e-02, +0,
 299  301          7.1661929761571485642e-02, -3.2074473649855177622e-16,
 300  302          7.1784853935241699219e-02, +0,
 301  303          7.0118738881148168218e-02, -2.5371257235753296804e-16,
 302  304          7.0233881473541259766e-02, +0,
 303  305          6.8594137996416115755e-02, +3.3796987842548399135e-16,
 304  306          6.8701922893524169922e-02, +0,
 305  307          6.7087137393172291411e-02, +5.5061492696328852397e-17,
 306  308          6.7187964916229248047e-02, +0,
 307  309          6.5596983299946565182e-02, -2.1580863111502565280e-16,
 308  310          6.5691232681274414062e-02, +0,
 309  311          6.4122802037412718335e-02, -3.1315661827469233434e-16,
 310  312          6.4210832118988037109e-02, +0,
 311  313          6.2426231582525915087e-02, -2.5758980071296622188e-16,
 312  314          6.2507450580596923828e-02, +0,
 313  315          6.0781559928021700046e-02, +1.3736899336217710591e-16,
 314  316          6.0856521129608154297e-02, +0,
 315  317          5.9432882624005145544e-02, +2.2246097394328856474e-16,
 316  318          5.9502959251403808594e-02, +0,
 317  319          5.8132551274581167888e-02, -6.2525053236379489390e-18,
 318  320          5.8198124170303344727e-02, +0,
 319  321          5.6876611930681164608e-02, -2.6589930995607417149e-16,
 320  322          5.6938022375106811523e-02, +0,
 321  323          5.5661522654748551986e-02, -4.2736362859832186197e-16,
 322  324          5.5719077587127685547e-02, +0,
 323  325          5.4484124463757943602e-02, -1.6708067365310384253e-16,
 324  326          5.4538100957870483398e-02, +0,
 325  327          5.3341582449436764080e-02, +3.3271673004611311850e-17,
 326  328          5.3392231464385986328e-02, +0,
 327  329          5.2231267345892007370e-02, -3.5593396674200571616e-16,
 328  330          5.2278816699981689453e-02, +0,
 329  331          5.1150874758829623090e-02, +1.4432815841187114832e-16,
 330  332          5.1195532083511352539e-02, +0,
 331  333          5.0098306612679444072e-02, +9.4680943793589404083e-17,
 332  334          5.0140261650085449219e-02, +0,
 333  335          4.9071641675614507960e-02, +2.1131168520301896817e-16,
 334  336          4.9111068248748779297e-02, +0,
 335  337          4.8069135772851545596e-02, +1.6035336741307516296e-16,
 336  338          4.8106193542480468750e-02, +0,
 337  339          4.7089192241088539959e-02, -2.2491738698796901479e-16,
 338  340          4.7124028205871582031e-02, +0,
 339  341          4.6130362086062248750e-02, -1.5111423469578965206e-16,
 340  342          4.6163111925125122070e-02, +0,
 341  343          4.5191314382707403752e-02, +4.1989325207399786612e-16,
 342  344          4.5222103595733642578e-02, +0,
 343  345          4.4270836390474244126e-02, -4.1432635292331004454e-16,
 344  346          4.4299781322479248047e-02, +0,
 345  347          4.3367774164955186222e-02, -3.0615383054587355892e-16,
 346  348          4.3394982814788818359e-02, +0,
 347  349          4.2481121875321825598e-02, -3.6730166956273555173e-16,
 348  350          4.2506694793701171875e-02, +0,
 349  351          4.1609902899457651415e-02, -4.4226425958068821782e-16,
 350  352          4.1633933782577514648e-02, +0,
 351  353          4.0753259129372665370e-02, +1.9801161516527046872e-16,
 352  354          4.0775835514068603516e-02, +0,
 353  355          3.9910361780060910064e-02, +8.2560620036613164573e-18,
 354  356          3.9931565523147583008e-02, +0,
 355  357          3.9080441183869218946e-02, +3.9908991939242971628e-17,
 356  358          3.9100348949432373047e-02, +0,
 357  359          3.8262816593271686827e-02, +9.5182237812195590276e-17,
 358  360          3.8281500339508056641e-02, +0,
 359  361          3.7456806948784837630e-02, +1.5213508760679563439e-16,
 360  362          3.7474334239959716797e-02, +0,
 361  363          3.6661849947035918262e-02, +7.3335516005184616486e-17,
 362  364          3.6678284406661987305e-02, +0,
 363  365          3.5877353272533163420e-02, -1.3007348019891714540e-16,
 364  366          3.5892754793167114258e-02, +0,
 365  367          3.5102754135096780885e-02, -2.9903662298950558656e-16,
 366  368          3.5117179155349731445e-02, +0,
 367  369          3.4337638360670830195e-02, +2.9656295131966114331e-16,
 368  370          3.4351140260696411133e-02, +0,
 369  371          3.3581472523789734907e-02, +3.4810947205572817820e-16,
 370  372          3.3594101667404174805e-02, +0,
 371  373          3.2833871859357266487e-02, -3.8885440174405159838e-16,
 372  374          3.2845675945281982422e-02, +0,
 373  375          3.2094421679560447558e-02, +5.8805134853032009978e-17,
 374  376          3.2105445861816406250e-02, +0,
 375  377          3.1243584858944295490e-02, +2.8737383773884313066e-17,
 376  378          3.1253755092620849609e-02, +0,
 377  379          0, 0, 0, 0
 378  380  };
 379  381  
 380  382  static const double C[] = {
 381  383          0.0,
 382  384          0.125,
 383  385          1.2980742146337069071e+33,
 384  386          7.8539816339744827900e-01,
  
    | ↓ open down ↓ | 351 lines elided | ↑ open up ↑ | 
 385  387          1.5707963267948965580e+00,
 386  388          6.1232339957367658860e-17,
 387  389          -3.1415926535897931160e+00,
 388  390          -1.2246467991473531772e-16,
 389  391          -3.33333333333327571893331786354179101074860633009e-0001,
 390  392          +1.99999999942671624230086497610394721817438631379e-0001,
 391  393          -1.42856965565428636896183013324727205980484158356e-0001,
 392  394          +1.10894981496317081405107718475040168084164825641e-0001,
 393  395  };
 394  396  
 395      -#define zero    C[0]
 396      -#define twom3   C[1]
 397      -#define two110  C[2]
 398      -#define pio4    C[3]
 399      -#define pio2    C[4]
 400      -#define pio2_lo C[5]
 401      -#define mpi     C[6]
 402      -#define mpi_lo  C[7]
 403      -#define p1      C[8]
 404      -#define p2      C[9]
 405      -#define p3      C[10]
 406      -#define p4      C[11]
      397 +#define zero            C[0]
      398 +#define twom3           C[1]
      399 +#define two110          C[2]
      400 +#define pio4            C[3]
      401 +#define pio2            C[4]
      402 +#define pio2_lo         C[5]
      403 +#define mpi             C[6]
      404 +#define mpi_lo          C[7]
      405 +#define p1              C[8]
      406 +#define p2              C[9]
      407 +#define p3              C[10]
      408 +#define p4              C[11]
 407  409  
 408  410  double
 409      -atan2(double oy, double ox) {
 410      -        double  ah, al, t, xh, x, y, z;
 411      -        int     i, k, hx, hy, sx, sy;
      411 +atan2(double oy, double ox)
      412 +{
      413 +        double ah, al, t, xh, x, y, z;
      414 +        int i, k, hx, hy, sx, sy;
      415 +
 412  416  #ifndef lint
 413      -        volatile int    inexact __unused;
      417 +        volatile int inexact __unused;
 414  418  #endif
 415  419  
 416  420          hy = ((int *)&oy)[HIWORD];
 417  421          sy = hy & 0x80000000;
 418  422          hy &= ~0x80000000;
 419  423  
 420  424          hx = ((int *)&ox)[HIWORD];
 421  425          sx = hx & 0x80000000;
 422  426          hx &= ~0x80000000;
 423  427  
 424  428          if (hy > hx || (hy == hx && ((unsigned *)&oy)[LOWORD] >
 425  429              ((unsigned *)&ox)[LOWORD])) {
 426  430                  i = hx;
 427  431                  hx = hy;
 428  432                  hy = i;
 429  433                  x = fabs(oy);
 430  434                  y = fabs(ox);
      435 +
 431  436                  if (sx) {
 432  437                          ah = pio2;
 433  438                          al = pio2_lo;
 434  439                  } else {
 435  440                          ah = -pio2;
 436  441                          al = -pio2_lo;
 437  442                          sy ^= 0x80000000;
 438  443                  }
 439  444          } else {
 440  445                  x = fabs(ox);
 441  446                  y = fabs(oy);
      447 +
 442  448                  if (sx) {
 443  449                          ah = mpi;
 444  450                          al = mpi_lo;
 445  451                          sy ^= 0x80000000;
 446  452                  } else {
 447  453                          ah = al = zero;
 448  454                  }
 449  455          }
 450  456  
 451  457          if (hx >= 0x7fe00000 || hx - hy >= 0x03600000) {
 452  458                  if (hx >= 0x7ff00000) {
 453  459                          if (((hx ^ 0x7ff00000) | ((int *)&x)[LOWORD]) != 0)
 454  460                                  return (ox * oy);
      461 +
 455  462                          if (hy >= 0x7ff00000)
 456  463                                  ah += pio4;
      464 +
 457  465  #ifndef lint
 458  466                          inexact = (int)ah;      /* inexact if ah != 0 */
 459  467  #endif
 460      -                        return ((sy)? -ah : ah);
      468 +                        return ((sy) ? -ah : ah);
 461  469                  }
      470 +
 462  471                  if (hx - hy >= 0x03600000) {
 463  472                          if ((int)ah == 0)
 464  473                                  ah = y / x;
 465      -                        return ((sy)? -ah : ah);
      474 +
      475 +                        return ((sy) ? -ah : ah);
 466  476                  }
      477 +
 467  478                  y *= twom3;
 468  479                  x *= twom3;
 469  480                  hy -= 0x00300000;
 470  481                  hx -= 0x00300000;
 471  482          } else if (hy < 0x00100000) {
 472  483                  if ((hy | ((int *)&y)[LOWORD]) == 0) {
 473  484                          if ((hx | ((int *)&x)[LOWORD]) == 0)
 474  485                                  return (_SVID_libm_err(ox, oy, 3));
      486 +
 475  487  #ifndef lint
 476  488                          inexact = (int)ah;      /* inexact if ah != 0 */
 477  489  #endif
 478      -                        return ((sy)? -ah : ah);
      490 +                        return ((sy) ? -ah : ah);
 479  491                  }
      492 +
 480  493                  y *= two110;
 481  494                  x *= two110;
 482  495                  hy = ((int *)&y)[HIWORD];
 483  496                  hx = ((int *)&x)[HIWORD];
 484  497          }
 485  498  
 486  499          k = (((hx - hy) + 0x00004000) >> 13) & ~0x3;
      500 +
 487  501          if (k > 644)
 488  502                  k = 644;
      503 +
 489  504          ah += TBL[k];
 490      -        al += TBL[k+1];
 491      -        t = TBL[k+2];
      505 +        al += TBL[k + 1];
      506 +        t = TBL[k + 2];
 492  507  
 493  508          xh = x;
 494  509          ((int *)&xh)[LOWORD] = 0;
 495  510          z = ((y - t * xh) - t * (x - xh)) / (x + y * t);
 496  511          x = z * z;
 497  512          t = ah + (z + (al + (z * x) * (p1 + x * (p2 + x * (p3 + x * p4)))));
 498      -        return ((sy)? -t : t);
      513 +        return ((sy) ? -t : t);
 499  514  }
    
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX