1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24  */
  25 
  26 /*
  27  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  28  * Use is subject to license terms.
  29  */
  30 
  31 #pragma weak __atan = atan
  32 
  33 
  34 /*
  35  * atan(x)
  36  * Accurate Table look-up algorithm with polynomial approximation in
  37  * partially product form.
  38  *
  39  * -- K.C. Ng, October 17, 2004
  40  *
  41  * Algorithm
  42  *
  43  * (1). Purge off Inf and NaN and 0
  44  * (2). Reduce x to positive by atan(x) = -atan(-x).
  45  * (3). For x <= 1/8 and let z = x*x, return
  46  *      (2.1) if x < 2^(-prec/2), atan(x) = x  with inexact flag raised
  47  *      (2.2) if x < 2^(-prec/4-1), atan(x) = x+(x/3)(x*x)
  48  *      (2.3) if x < 2^(-prec/6-2), atan(x) = x+(z-5/3)(z*x/5)
  49  *      (2.4) Otherwise
  50  *              atan(x) = poly1(x) = x + A * B,
  51  *      where
  52  *              A = (p1*x*z) * (p2+z(p3+z))
  53  *              B = (p4+z)+z*z) * (p5+z(p6+z))
  54  *      Note: (i) domain of poly1 is [0, 1/8], (ii) remez relative
  55  *      approximation error of poly1 is bounded by
  56  *              |(atan(x)-poly1(x))/x| <= 2^-57.61
  57  * (4). For x >= 8 then
  58  *      (3.1) if x >= 2^prec,     atan(x) = atan(inf) - pio2lo
  59  *      (3.2) if x >= 2^(prec/3), atan(x) = atan(inf) - 1/x
  60  *      (3.3) if x <= 65,      atan(x) = atan(inf) - poly1(1/x)
  61  *      (3.4) otherwise           atan(x) = atan(inf) - poly2(1/x)
  62  *      where
  63  *              poly2(r) = (q1*r) * (q2+z(q3+z)) * (q4+z),
  64  *      its domain is [0, 0.0154]; and its remez absolute
  65  *      approximation error is bounded by
  66  *              |atan(x)-poly2(x)|<= 2^-59.45
  67  *
  68  * (5). Now x is in (0.125, 8).
  69  *      Recall identity
  70  *              atan(x) = atan(y) + atan((x-y)/(1+x*y)).
  71  *      Let j = (ix - 0x3fc00000) >> 16, 0 <= j < 96, where ix is the high
  72  *      part of x in IEEE double format. Then
  73  *              atan(x) = atan(y[j]) + poly2((x-y[j])/(1+x*y[j]))
  74  *      where y[j] are carefully chosen so that it matches x to around 4.5
  75  *      bits and at the same time atan(y[j]) is very close to an IEEE double
  76  *      floating point number. Calculation indicates that
  77  *              max|(x-y[j])/(1+x*y[j])| < 0.0154
  78  *              j,x
  79  *
  80  * Accuracy: Maximum error observed is bounded by 0.6 ulp after testing
  81  * more than 10 million random arguments
  82  */
  83 
  84 #include "libm.h"
  85 #include "libm_protos.h"
  86 
  87 extern const double _TBL_atan[];
  88 
  89 static const double g[] = {
  90 /* one  = */
  91         1.0,
  92 /* p1   = */8.02176624254765935351230154992663301527500152588e-0002,
  93 /* p2   = */1.27223421700559402580665846471674740314483642578e+0000,
  94 /* p3   = */-1.20606901800503640842521235754247754812240600586e+0000,
  95 /* p4   = */-2.36088967922325565496066701598465442657470703125e+0000,
  96 /* p5   = */1.38345799501389166152875986881554126739501953125e+0000,
  97 /* p6   = */1.06742368078953453469637224770849570631980895996e+0000,
  98 /* q1   = */ -1.42796626333911796935538518482644576579332351685e-0001,
  99 /* q2   = */ 3.51427110447873227059810477159863497078605962912e+0000,
 100 /* q3   = */ 5.92129112708164262457444237952586263418197631836e-0001,
 101 /* q4   = */ -1.99272234785683144409063061175402253866195678711e+0000,
 102 /* pio2hi */ 1.570796326794896558e+00,
 103 /* pio2lo */ 6.123233995736765886e-17,
 104 /* t1   = */ -0.333333333333333333333333333333333,
 105 /* t2   = */ 0.2,
 106 /* t3   = */ -1.666666666666666666666666666666666,
 107 };
 108 
 109 #define one             g[0]
 110 #define p1              g[1]
 111 #define p2              g[2]
 112 #define p3              g[3]
 113 #define p4              g[4]
 114 #define p5              g[5]
 115 #define p6              g[6]
 116 #define q1              g[7]
 117 #define q2              g[8]
 118 #define q3              g[9]
 119 #define q4              g[10]
 120 #define pio2hi          g[11]
 121 #define pio2lo          g[12]
 122 #define t1              g[13]
 123 #define t2              g[14]
 124 #define t3              g[15]
 125 
 126 double
 127 atan(double x)
 128 {
 129         double y, z, r, p, s;
 130         int ix, lx, hx, j;
 131 
 132         hx = ((int *)&x)[HIWORD];
 133         lx = ((int *)&x)[LOWORD];
 134         ix = hx & ~0x80000000;
 135         j = ix >> 20;
 136 
 137         /* for |x| < 1/8 */
 138         if (j < 0x3fc) {
 139                 if (j < 0x3f5) {             /* when |x| < 2**(-prec/6-2) */
 140                         if (j < 0x3e3)               /* if |x| < 2**(-prec/2-2) */
 141                                 return ((int)x == 0 ? x : one);
 142 
 143                         if (j < 0x3f1) {     /* if |x| < 2**(-prec/4-1) */
 144                                 return (x + (x * t1) * (x * x));
 145                         } else {                /* if |x| < 2**(-prec/6-2) */
 146                                 z = x * x;
 147                                 s = t2 * x;
 148                                 return (x + (t3 + z) * (s * z));
 149                         }
 150                 }
 151 
 152                 z = x * x;
 153                 s = p1 * x;
 154                 return (x + ((s * z) * (p2 + z * (p3 + z))) *
 155                     (((p4 + z) + z * z) * (p5 + z * (p6 + z))));
 156         }
 157 
 158         /* for |x| >= 8.0 */
 159         if (j >= 0x402) {
 160                 if (j < 0x436) {
 161                         r = one / x;
 162 
 163                         if (hx >= 0) {
 164                                 y = pio2hi;
 165                                 p = pio2lo;
 166                         } else {
 167                                 y = -pio2hi;
 168                                 p = -pio2lo;
 169                         }
 170 
 171                         if (ix < 0x40504000) {       /* x <  65 */
 172                                 z = r * r;
 173                                 s = p1 * r;
 174                                 return (y + ((p - r) - ((s * z) * (p2 + z *
 175                                     (p3 + z))) * (((p4 + z) + z * z) *
 176                                     (p5 + z * (p6 + z)))));
 177                         } else if (j < 0x412) {
 178                                 z = r * r;
 179                                 return (y + (p - ((q1 * r) * (q4 + z)) * (q2 +
 180                                     z * (q3 + z))));
 181                         } else {
 182                                 return (y + (p - r));
 183                         }
 184                 } else {
 185                         if (j >= 0x7ff)      /* x is inf or NaN */
 186                                 if (((ix - 0x7ff00000) | lx) != 0)
 187 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
 188                                         return (ix >= 0x7ff80000 ? x : x - x);
 189 
 190                         /* assumes sparc-like QNaN */
 191 #else
 192                                         return (x - x);
 193 #endif
 194                         y = -pio2lo;
 195                         return (hx >= 0 ? pio2hi - y : y - pio2hi);
 196                 }
 197         } else {                        /* now x is between 1/8 and 8 */
 198                 double *w, w0, w1, s, z;
 199 
 200                 w = (double *)_TBL_atan + (((ix - 0x3fc00000) >> 16) << 1);
 201                 w0 = (hx >= 0) ? w[0] : -w[0];
 202                 s = (x - w0) / (one + x * w0);
 203                 w1 = (hx >= 0) ? w[1] : -w[1];
 204                 z = s * s;
 205                 return (((q1 * s) * (q4 + z)) * (q2 + z * (q3 + z)) + w1);
 206         }
 207 }