Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/C/asin.c
+++ new/usr/src/lib/libm/common/C/asin.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 31 #pragma weak __asin = asin
31 32
32 -/* INDENT OFF */
33 +
33 34 /*
34 35 * asin(x)
35 36 * Method :
36 37 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
37 38 * we approximate asin(x) on [0,0.5] by
38 39 * asin(x) = x + x*x^2*R(x^2)
39 40 * where
40 41 * R(x^2) is a rational approximation of (asin(x)-x)/x^3
41 42 * and its remez error is bounded by
42 43 * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
43 44 *
44 45 * For x in [0.5,1]
45 46 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
46 47 * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
47 48 * then for x>0.98
48 49 * asin(x) = pi/2 - 2*(s+s*z*R(z))
49 50 * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
50 51 * For x<=0.98, let pio4_hi = pio2_hi/2, then
51 52 * f = hi part of s;
52 - * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
53 + * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
53 54 * and
54 55 * asin(x) = pi/2 - 2*(s+s*z*R(z))
55 56 * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
56 57 * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
57 58 *
58 59 * Special cases:
59 60 * if x is NaN, return x itself;
60 61 * if |x|>1, return NaN with invalid signal.
61 62 *
62 63 */
63 -/* INDENT ON */
64 64
65 -#include "libm_protos.h" /* _SVID_libm_error */
65 +#include "libm_protos.h" /* _SVID_libm_error */
66 66 #include "libm_macros.h"
67 67 #include <math.h>
68 68
69 -/* INDENT OFF */
70 69 static const double xxx[] = {
71 -/* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
72 -/* huge */ 1.000e+300,
73 -/* pio2_hi */ 1.57079632679489655800e+00, /* 3FF921FB, 54442D18 */
74 -/* pio2_lo */ 6.12323399573676603587e-17, /* 3C91A626, 33145C07 */
75 -/* pio4_hi */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
76 -/* coefficient for R(x^2) */
77 -/* pS0 */ 1.66666666666666657415e-01, /* 3FC55555, 55555555 */
78 -/* pS1 */ -3.25565818622400915405e-01, /* BFD4D612, 03EB6F7D */
79 -/* pS2 */ 2.01212532134862925881e-01, /* 3FC9C155, 0E884455 */
80 -/* pS3 */ -4.00555345006794114027e-02, /* BFA48228, B5688F3B */
81 -/* pS4 */ 7.91534994289814532176e-04, /* 3F49EFE0, 7501B288 */
82 -/* pS5 */ 3.47933107596021167570e-05, /* 3F023DE1, 0DFDF709 */
83 -/* qS1 */ -2.40339491173441421878e+00, /* C0033A27, 1C8A2D4B */
84 -/* qS2 */ 2.02094576023350569471e+00, /* 40002AE5, 9C598AC8 */
85 -/* qS3 */ -6.88283971605453293030e-01, /* BFE6066C, 1B8D0159 */
86 -/* qS4 */ 7.70381505559019352791e-02 /* 3FB3B8C5, B12E9282 */
70 +/* one */
71 + 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
72 +/* huge */ 1.000e+300,
73 +/* pio2_hi */ 1.57079632679489655800e+00, /* 3FF921FB, 54442D18 */
74 +/* pio2_lo */ 6.12323399573676603587e-17, /* 3C91A626, 33145C07 */
75 +/* pio4_hi */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
76 +
77 +/*
78 + * coefficient for R(x^2)
79 + * pS0
80 + */
81 + 1.66666666666666657415e-01, /* 3FC55555, 55555555 */
82 +/* pS1 */ -3.25565818622400915405e-01, /* BFD4D612, 03EB6F7D */
83 +/* pS2 */ 2.01212532134862925881e-01, /* 3FC9C155, 0E884455 */
84 +/* pS3 */ -4.00555345006794114027e-02, /* BFA48228, B5688F3B */
85 +/* pS4 */ 7.91534994289814532176e-04, /* 3F49EFE0, 7501B288 */
86 +/* pS5 */ 3.47933107596021167570e-05, /* 3F023DE1, 0DFDF709 */
87 +/* qS1 */ -2.40339491173441421878e+00, /* C0033A27, 1C8A2D4B */
88 +/* qS2 */ 2.02094576023350569471e+00, /* 40002AE5, 9C598AC8 */
89 +/* qS3 */ -6.88283971605453293030e-01, /* BFE6066C, 1B8D0159 */
90 +/* qS4 */ 7.70381505559019352791e-02 /* 3FB3B8C5, B12E9282 */
87 91 };
88 -#define one xxx[0]
89 -#define huge xxx[1]
90 -#define pio2_hi xxx[2]
91 -#define pio2_lo xxx[3]
92 -#define pio4_hi xxx[4]
93 -#define pS0 xxx[5]
94 -#define pS1 xxx[6]
95 -#define pS2 xxx[7]
96 -#define pS3 xxx[8]
97 -#define pS4 xxx[9]
98 -#define pS5 xxx[10]
99 -#define qS1 xxx[11]
100 -#define qS2 xxx[12]
101 -#define qS3 xxx[13]
102 -#define qS4 xxx[14]
103 -/* INDENT ON */
92 +
93 +#define one xxx[0]
94 +#define huge xxx[1]
95 +#define pio2_hi xxx[2]
96 +#define pio2_lo xxx[3]
97 +#define pio4_hi xxx[4]
98 +#define pS0 xxx[5]
99 +#define pS1 xxx[6]
100 +#define pS2 xxx[7]
101 +#define pS3 xxx[8]
102 +#define pS4 xxx[9]
103 +#define pS5 xxx[10]
104 +#define qS1 xxx[11]
105 +#define qS2 xxx[12]
106 +#define qS3 xxx[13]
107 +#define qS4 xxx[14]
104 108
105 109 double
106 -asin(double x) {
110 +asin(double x)
111 +{
107 112 double t, w, p, q, c, r, s;
108 113 int hx, ix, i;
109 114
110 - hx = ((int *) &x)[HIWORD];
115 + hx = ((int *)&x)[HIWORD];
111 116 ix = hx & 0x7fffffff;
112 - if (ix >= 0x3ff00000) { /* |x| >= 1 */
113 - if (((ix - 0x3ff00000) | ((int *) &x)[LOWORD]) == 0)
117 +
118 + if (ix >= 0x3ff00000) { /* |x| >= 1 */
119 + if (((ix - 0x3ff00000) | ((int *)&x)[LOWORD]) == 0)
114 120 /* asin(1)=+-pi/2 with inexact */
115 121 return (x * pio2_hi + x * pio2_lo);
116 122 else if (isnan(x))
117 123 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
118 124 return (ix >= 0x7ff80000 ? x : (x - x) / (x - x));
119 - /* assumes sparc-like QNaN */
125 +
126 + /* assumes sparc-like QNaN */
120 127 #else
121 - return (x - x) / (x - x); /* asin(|x|>1) is NaN */
128 + return ((x - x) / (x - x)); /* asin(|x|>1) is NaN */
122 129 #endif
123 130 else
124 131 return (_SVID_libm_err(x, x, 2));
125 132 } else if (ix < 0x3fe00000) { /* |x| < 0.5 */
126 133 if (ix < 0x3e400000) { /* if |x| < 2**-27 */
127 - if ((i = (int) x) == 0)
134 + if ((i = (int)x) == 0)
128 135 /* return x with inexact if x != 0 */
129 136 return (x);
130 137 }
138 +
131 139 t = x * x;
132 - p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 +
133 - t * (pS4 + t * pS5)))));
140 + p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t *
141 + pS5)))));
134 142 q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
135 143 w = p / q;
136 144 return (x + x * w);
137 145 }
146 +
138 147 /* 1 > |x| >= 0.5 */
139 148 w = one - fabs(x);
140 149 t = w * 0.5;
141 150 p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
142 151 q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
143 152 s = sqrt(t);
144 - if (ix >= 0x3FEF3333) { /* if |x| > 0.975 */
153 +
154 + if (ix >= 0x3FEF3333) { /* if |x| > 0.975 */
145 155 w = p / q;
146 156 t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
147 157 } else {
148 158 w = s;
149 - ((int *) &w)[LOWORD] = 0;
159 + ((int *)&w)[LOWORD] = 0;
150 160 c = (t - w * w) / (s + w);
151 161 r = p / q;
152 162 p = 2.0 * s * r - (pio2_lo - 2.0 * c);
153 163 q = pio4_hi - 2.0 * w;
154 164 t = pio4_hi - (p - q);
155 165 }
166 +
156 167 return (hx > 0 ? t : -t);
157 168 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX